Emotion Recognition based on Psychological Components in Guided Narratives for Emotion Regulation

Gustave Cortal¹, Alain Finkel^{1,4}, Patrick Paroubek², Lina Ye³

¹ Université Paris-Saclay, ENS Paris-Saclay, CNRS, LMF
² Université Paris-Saclay, CNRS, LISN
³ Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupélec
⁴ Institut Universitaire de France, France

Summary

1. Introduction

Emotion Recognition Psychological Components

2. Guided Narratives for Emotion Regulation

3. Experiments

Emotion Classification

Component Classification

4. Conclusion

Emotion Recognition

Bostan and Klinger, "An Analysis of Annotated Corpora for Emotion Classification in Text", 2018

Cambria et al., "SenticNet 6: Ensemble Application of Symbolic and Subsymbolic AI for Sentiment Analysis", 2020

Troiano, Oberländer*, and Klinger, "Dimensional Modeling of Emotions in Text with Appraisal Theories: Corpus Creation, Annotation Reliability, and Prediction", 2022

Etienne, Battistelli, and Lecorvé, "A (Psycho-)Linguistically Motivated Scheme for Annotating and Exploring Emotions in a Genre-Diverse Corpus", 2022

Casel, Heindl, and Klinger, "Emotion Recognition under Consideration of the Emotion Component Process Model", 2021

Psychological Components: Appraisal Theory

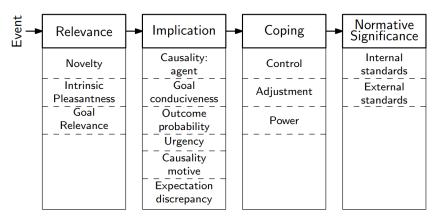


Figure: Sequence of appraisal criteria (Hofmann et al., 2022).

Psychological Components: Component Process Model

Emotion as the expression of several components that synchronize in reaction to an event (Scherer, 2005)

Example

"During an exam, I evaluate my ability to solve an exercise; I think I do not have the skills to solve it and will get a bad mark (*cognitive appraisal*). I panic (*subjective feeling*), I sweat (*physiological response*), my legs shake (*motor expression*), I feel like getting up and running away from the classroom (*action tendency*)."

Casel, Heindl, and Klinger, "Emotion Recognition under Consideration of the Emotion Component Process Model", 2021

Guided Narratives for Emotion Regulation

Cognitive Analysis of Emotion:

- explores emotions with behavioral (*behavior*), physiological (*feeling*), and cognitive (*thinking* and *territory*) components
- helps individuals better regulate their emotions
- uses psychological components to reorganize the narrative of experienced emotional events

Finkel, april 2022

Finkel, *Manuel d'analyse cognitive des émotions: Théorie et applications*, 2022

Cortal et al., "Natural Language Processing for Cognitive Analysis of Emotions", 2022

Guided Narratives for Emotion Regulation

Component	Answer
behavior	I'm giving a lecture on a Friday morning at 8:30. A student goes out and comes back a few moments later with a coffee in his hand.
feeling	My heart is beating fast, and I freeze, waiting to know how to act.
thinking territory	I think this student is disrupting my class. The student attacks my ability to be respected in class.

Table: Example of an emotional narrative structured according to emotion components. The writer identified that he was angry.

Guided Narratives for Emotion Regulation: Corpus Statistics

	#N	$\overline{t_N}$	#A	% completion
Total	812	190	3082	61
<u>Emotion</u>	392	216	1568	100

Table: Number of narratives (#N), average number of tokens for narratives ($\overline{t_N}$), number of answers (#A) and completion rate for questionnaires. Statistics for the entire corpus (<u>Total</u>) and the subset for the emotion classification task (<u>Emotion</u>).

Guided Narratives for Emotion Regulation: Corpus Statistics

Component	#A	$\overline{t_A}$	Emotion	%
behavior	802	82	Anger	52
feeling	799	27	Fear	36
thinking	799	54	Sadness	14
territory	682	34	Joy	11

(a) Entire corpus (<u>Total</u>).

Component	#A	$\overline{t_A}$	Emotion	%
behavior	392	93	Anger	48
feeling	392	26	Fear	32
thinking	392	59	Sadness	10
territory	392	38	Joy	10

(b) Subset of <u>Total</u> (Emotion).

Table: Number of answers (#A), average number of tokens for answers ($\overline{t_A}$) and distribution of emotion classes.

Methods

Traditional machine learning methods (logistic regression, support vector machines, random forests) and language models (CamemBERT)

Emotion Classification: whether an answer (linked to a specific component) expressed *anger*, *fear*, *sadness* or *happiness*.

Component Classification: whether an answer is a *behavior*, a *feeling*, a *thinking*, or a *territory*

Emotion Classification

Examples

(Only *territory*)

"The student attacks my ability to be respected in class." ightarrow anger

(Without Behavior)

"My heart is beating fast, and I freeze, waiting to know how to act. I think this student is disrupting my class. The student attacks my ability to be respected in class." \rightarrow anger

Emotion Classification: Results

	Logistic Regression			CamemBERT		
Component	Precision	Recall	F_1	Precision	Recall	F_1
All	71.2 (2.6)	69.1 (2.2)	67.8 (2.3)	85.1	84.8	84.7
Without behavior	77.4 (2.3)	75.8 (2.4)	74.5 (2.6)	80.3	79.8	79.7
Without <i>feeling</i>	64.3 (1.9)	61.5 (1.2)	61.3 (2.2)	81.6	79.8	79.9
Without thinking	70.9 (1.8)	69.1 (2.0)	68.3 (2.2)	79.6	78.5	78.7
Without territory	64.3 (4.1)	64.5 (2.4)	62.3 (2.8)	78.7	78.5	78.6
Only behavior	52.1 (3.5)	54.6 (2.9)	51.7 (2.9)	68.4	67.1	66.6
Only feeling	69.6 (1.5)	68.9 (2.1)	68.4 (2.0)	67.8	68.4	67.7
Only thinking	50.1 (3.4)	53.8 (2.3)	50.6 (2.7)	70.5	70.1	70.1
Only territory	68.2 (1.8)	66.8 (2.2)	66.6 (2.3)	71.4	68.4	68.9

Table: Scores (\pm std) for discrete emotion classification based on components.

Emotion Classification: Discussion

Hypothesis

Strong relationship between emotion expression modes and linguistic realizations of emotion components

Emotion Expression modes (Micheli, 2014)

- labeled emotion: "I am upset"
- displayed emotion: "Oh !"
- suggested emotion: "I think this student is disrupting my class"

Component Classification

Examples

"My heart is beating fast, and I freeze, waiting to know how to act." \rightarrow $\mathit{feeling}$

"I think this student is disrupting my class." \rightarrow thinking

"The student attacks my ability to be respected in class." ightarrow territory

Results

Model	Precision	Recall	<i>F</i> ₁
Logistic Regression	84.9 (0.3)	84.3 (0.3)	84.4 (0.3)
CamemBERT	93.2	93.0	93.1

Table: Scores (\pm std) for emotion component classification.

Conclusion

- French corpus of 812 emotional narratives (3082 answers) annotated by the writers and structured according to all components
- Each component is useful for classifying discrete emotions; the model with the best performance considers all components
- Differences in how emotion components are expressed (explained by emotion expression modes studied in linguistics?)

References I

- Laura-Ana-Maria Bostan and Roman Klinger. "An Analysis of Annotated Corpora for Emotion Classification in Text". In: Proceedings of the 27th International Conference on Computational Linguistics. Santa Fe, New Mexico, USA: Association for Computational Linguistics, Aug. 2018, pp. 2104–2119. URL: https://aclanthology.org/C18-1179.
- [2] Erik Cambria et al. "SenticNet 6: Ensemble Application of Symbolic and Subsymbolic AI for Sentiment Analysis". In: Proceedings of the 29th ACM International Conference on Information and Knowledge Management. CIKM '20. Virtual Event, Ireland: Association for Computing Machinery, 2020, 105–114. ISBN: 9781450368599. DOI: 10.1145/3340531.3412003. URL: https://doi.org/10.1145/3340531.3412003.

References II

- [3] Felix Casel, Amelie Heindl, and Roman Klinger. "Emotion Recognition under Consideration of the Emotion Component Process Model". In: Proceedings of the 17th Conference on Natural Language Processing (KONVENS 2021). Düsseldorf, Germany: KONVENS 2021 Organizers, 2021, pp. 49–61. URL: https://aclanthology.org/2021.konvens-1.5.
- [4] Gustave Cortal et al. "Natural Language Processing for Cognitive Analysis of Emotions". In: Semantics, Memory, and Emotion 2022. Paris, France, 2022. URL: https://hal.inria.fr/hal-03805702.
- [5] Aline Etienne, Delphine Battistelli, and Gwénolé Lecorvé. "A (Psycho-)Linguistically Motivated Scheme for Annotating and Exploring Emotions in a Genre-Diverse Corpus". In: Proceedings of the Thirteenth Language Resources and Evaluation Conference. Marseille, France: European Language Resources Association, June 2022, pp. 603–612. URL: https://aclanthology.org/2022.lrec-1.64.

References III

- [6] Alain Finkel. Manuel d'analyse cognitive des émotions: Théorie et applications. Paris: Dunod, 2022.
- [7] Valentin Hofmann et al. "Modeling Ideological Salience and Framing in Polarized Online Groups with Graph Neural Networks and Structured Sparsity". In: Findings of the Association for Computational Linguistics: NAACL 2022. Seattle, United States: Association for Computational Linguistics, July 2022, pp. 536–550. DOI: 10.18653/v1/2022.findings-naacl.41. URL: https://aclanthology.org/2022.findings-naacl.41.
- [8] Raphaël Micheli. Les émotions dans les discours. De Boeck Supérieur, 2014. DOI: 10.3917/dbu.mchel.2014.01. URL: https://doi.org/10.3917/dbu.mchel.2014.01.
- [9] Klaus R. Scherer. "What are emotions? And how can they be measured?" In: Social Science Information 44.4 (2005), pp. 695–729. DOI: 10.1177/0539018405058216. eprint: https://doi.org/10.1177/0539018405058216. URL: https://doi.org/10.1177/0539018405058216.

References IV

[10] Enrica Troiano, Laura Oberländer*, and Roman Klinger. "Dimensional Modeling of Emotions in Text with Appraisal Theories: Corpus Creation, Annotation Reliability, and Prediction". In: Computational Linguistics (Dec. 2022), pp. 1–72. ISSN: 0891-2017. DOI: 10.1162/coli_a_00461.eprint: https://direct.mit.edu/coli/article-pdf/doi/10.1162/ coli_a_00461/2062690/coli_a_00461.pdf. URL: https://doi.org/10.1162/coli_a_00461.