Formalizing Style in Personal Narratives

Gustave Cortal^{1,2}, Alain Finkel¹

¹Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, 91190, Gif-sur-Yvette, France

²Université Paris-Saclay, CNRS, LISN, 91400, Orsay, France

Introduction

Research question: How is subjective experience communicated in narratives?

Style as a proxy to study how subjective experience is linguistically communicated

We narrow the general definition of style: a distinctive manner of communicating subjective experience in narratives

Contributions

Problem: Style is an intuitive notion; we need an operational definition **Task**: Formalize style as *patterns of linguistic choices encoding subjective experience*

Our contributions are:

- A sequence-based framework defining style as patterns of linguistic choices;
- A methodology for automatically identifying patterns using sequence analysis;
- A case study on dream narratives.

Categorizing linguistic features

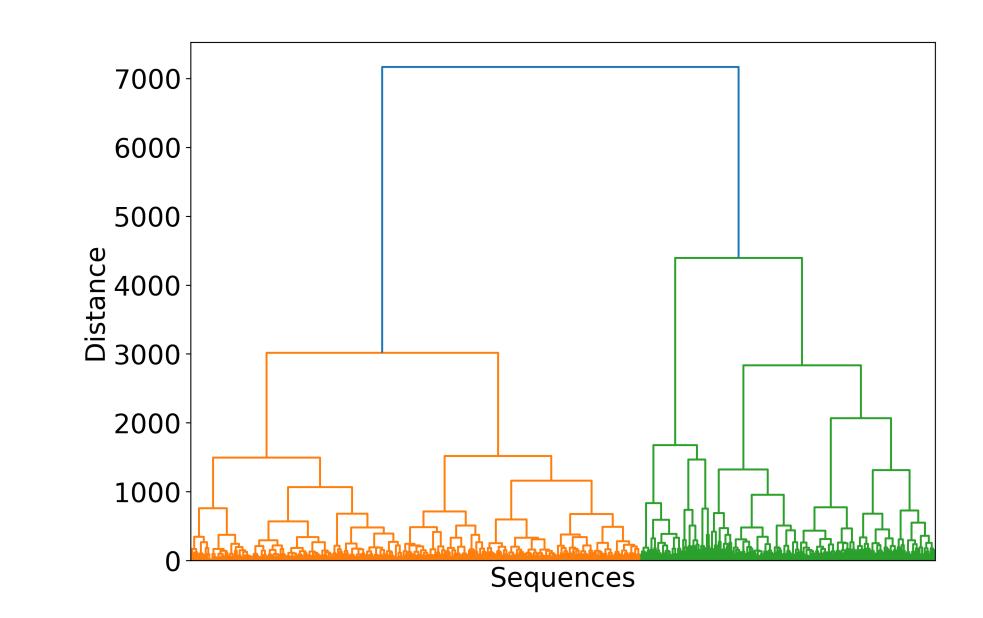
According to *systemic functional linguistics*, language represents experience through *processes*, *participants and circumstances*

Processes	Examples	
Action: actions and events in the physical world.	[He] _{Actor} [takes] _{Action} [the valuable] _{Affected}	
	[I] _{Actor} [give] _{Action} [her] _{Recipient} [a chance] _{Range}	
Mental: internal experiences such as thoughts, perceptions, and feelings.	[The moon] _{Senser} [sees] _{Mental} [the earth] _{Phenomenon}	
	[He] _{Senser} [disliked] _{Mental} [Gilbert's writing] _{Phenomenon}	
Verbal: acts of communication.	[Gustave] _{Sayer} [said] _{Verbal} ["everything will be okay"] _{Verbiage}	
State: states of being, having, or existence.	There [was] _{Existential} [a swimming pool] _{Existent}	
	[John] _{Carrier} [is] _{State} [an interesting teacher] _{Attribute}	

To identify features, we perform in-context learning with a language model (Llama 3 8B)

Sequence-based framework

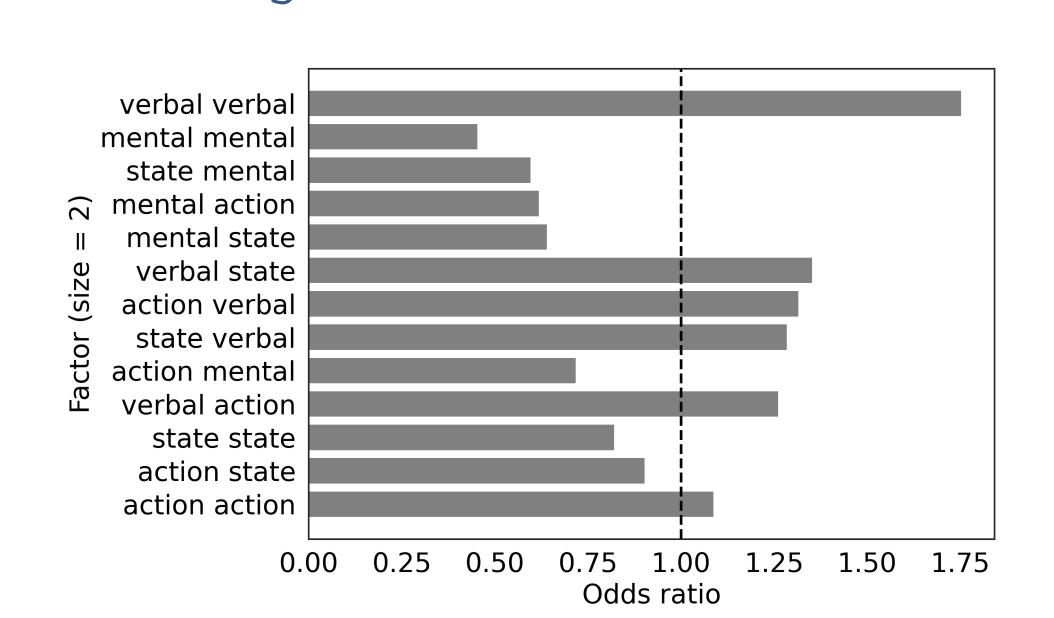
We first segment a narrative into clauses, then identify features such as processes and participants for each clause. Each narrative is mapped to a symbolic sequence based on identified features


Clause	Process (symbol)	Participants
I wake in a dark room	Action (a)	Actor
I feel a cold wind	Mental (m)	Senser,
		Phenomenon
I tell myself to move	Verbal (v)	Sayer,
		Recipient

Sequence: amv | Substrings: {am, mv}

Representative sequences

Hierarchical clustering with cosine similarity between substrings of sequences


Representative sequences for the two clusters: savamasasaaamaaasavvvaaaaaaavssaaaaa and sssssavaavssvsavvvvsmasasaasaasaaamaamvmsss with a = action, m = mental, s = state, v = verbal

Proportions of substrings deviating from the average

We compare the proportions of sequences containing a given substring between the War veteran and the average dreamer

The *odds ratio* measures how much more (or less) likely it is to observe a given substring in one dreamer compared to another

Perspectives

- Authorship profiling: identifying signature patterns that characterize an author's unique way of constructing narratives
- Style-conditioned narrative generation: generating narratives from a sequence of linguistic features
- Applying methods from complexity science and formal language theory: analyzing subsequences, using complexity measures to quantify redundancies, etc.

contact: gustave.cortal@ens-paris-saclay.fr