Formalizing Style in Personal Narratives Gustave Cortal^{1,2}, Alain Finkel¹ ¹Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, 91190, Gif-sur-Yvette, France ²Université Paris-Saclay, CNRS, LISN, 91400, Orsay, France #### Introduction **Research question**: How is subjective experience communicated in narratives? Style as a proxy to study how subjective experience is linguistically communicated We narrow the general definition of style: a distinctive manner of communicating subjective experience in narratives #### Contributions **Problem**: Style is an intuitive notion; we need an operational definition **Task**: Formalize style as *patterns of linguistic choices encoding subjective experience* Our contributions are: - A sequence-based framework defining style as patterns of linguistic choices; - A methodology for automatically identifying patterns using sequence analysis; - A case study on dream narratives. ## Categorizing linguistic features According to *systemic functional linguistics*, language represents experience through *processes*, *participants and circumstances* | Processes | Examples | | |---|--|--| | Action: actions and events in the physical world. | [He] _{Actor} [takes] _{Action} [the valuable] _{Affected} | | | | [I] _{Actor} [give] _{Action} [her] _{Recipient} [a chance] _{Range} | | | Mental: internal experiences such as thoughts, perceptions, and feelings. | [The moon] _{Senser} [sees] _{Mental} [the earth] _{Phenomenon} | | | | [He] _{Senser} [disliked] _{Mental} [Gilbert's writing] _{Phenomenon} | | | Verbal: acts of communication. | [Gustave] _{Sayer} [said] _{Verbal} ["everything will be okay"] _{Verbiage} | | | State: states of being, having, or existence. | There [was] _{Existential} [a swimming pool] _{Existent} | | | | [John] _{Carrier} [is] _{State} [an interesting teacher] _{Attribute} | | To identify features, we perform in-context learning with a language model (Llama 3 8B) ## Sequence-based framework We first segment a narrative into clauses, then identify features such as processes and participants for each clause. Each narrative is mapped to a symbolic sequence based on identified features | Clause | Process (symbol) | Participants | |-----------------------|---------------------|---------------------| | I wake in a dark room | Action (a) | Actor | | I feel a cold wind | Mental (m) | Senser, | | | | Phenomenon | | I tell myself to move | Verbal (v) | Sayer, | | | | Recipient | | | | | Sequence: amv | Substrings: {am, mv} ## Representative sequences Hierarchical clustering with cosine similarity between substrings of sequences Representative sequences for the two clusters: savamasasaaamaaasavvvaaaaaaavssaaaaa and sssssavaavssvsavvvvsmasasaasaasaaamaamvmsss with a = action, m = mental, s = state, v = verbal ## Proportions of substrings deviating from the average We compare the proportions of sequences containing a given substring between the War veteran and the average dreamer The *odds ratio* measures how much more (or less) likely it is to observe a given substring in one dreamer compared to another ### Perspectives - Authorship profiling: identifying signature patterns that characterize an author's unique way of constructing narratives - Style-conditioned narrative generation: generating narratives from a sequence of linguistic features - Applying methods from complexity science and formal language theory: analyzing subsequences, using complexity measures to quantify redundancies, etc. contact: gustave.cortal@ens-paris-saclay.fr