
Statistical Language Modeling
From N-grams to Transformers

Gustave Cortal

May 30, 2024

Gustave Cortal 1 / 21

Table of contents

N-grams

Feedforward neural networks

Recurrent neural networks and attention mechanisms

Transformers

Gustave Cortal 2 / 21

Tokenization

Tokenization is splitting text into individual words or tokens

Multiple challenges:

▶ Different delimiters: spaces, punctuation
▶ Contractions: "can’t" → "can not"
▶ Special cases: dates, numbers, URLs, hashtags, email addresses

Gustave Cortal 3 / 21

Tokenization

Input
"Natural language processing enables computers to understand human
language."

Tokenized output
Natural, language, processing, enables, computers, to, understand,
human, language, .

Gustave Cortal 4 / 21

Tokenization

Input
"Dr. Smith’s email, dr.smith@example.com, isn’t working since
01/02/2023; try reaching out at (555) 123-4567 in San Francisco."

Tokenized output
Dr., Smith’s, email, „ dr.smith@example.com, „ isn’t, working, since,
01/02/2023, ;, try, reaching, out, at, (, 555,), 123-4567, in, San
Francisco, .

Gustave Cortal 5 / 21

Tokenization

Rule-based approach
Use predefined rules, like splitting by spaces or punctuation using regular
expressions

Machine learning approach
Learn from data to handle complex cases, e.g., using Byte-Pair Encoding
subword tokenization

Gustave Cortal 6 / 21

N-grams

Gustave Cortal

May 30, 2024

Gustave Cortal 1 / 19

What is a language model?

A language model is a probabilistic model that:

▶ computes the probability of a sequence of words S
P(S) = P(w1,w2, ...,wn)

▶ computes the probability of an upcoming word
P(w5|w1,w2,w3,w4)

Useful for building conversational agents, performing translation, speech
recognition, summarization, question-answering, classification, etc.

For example, for speech recognition:
P(I saw a van) >> P(eyes awe of an)

Gustave Cortal 8 / 21

What is a language model?

A language model is a probabilistic model that:

▶ computes the probability of a sequence of words S
P(S) = P(w1,w2, ...,wn)

▶ computes the probability of an upcoming word
P(w5|w1,w2,w3,w4)

Useful for building conversational agents, performing translation, speech
recognition, summarization, question-answering, classification, etc.

For example, for speech recognition:
P(I saw a van) >> P(eyes awe of an)

Gustave Cortal 8 / 21

What is a language model?

A language model is a probabilistic model that:

▶ computes the probability of a sequence of words S
P(S) = P(w1,w2, ...,wn)

▶ computes the probability of an upcoming word
P(w5|w1,w2,w3,w4)

Useful for building conversational agents, performing translation, speech
recognition, summarization, question-answering, classification, etc.

For example, for speech recognition:
P(I saw a van) >> P(eyes awe of an)

Gustave Cortal 8 / 21

How to compute P(S)?

Definition of conditional probabilities:

P(B|A) = P(A,B)/P(A)

P(A,B) = P(A)P(B|A)

Applying the chain rule to multiple variables:

P(A,B,C ,D) = P(A)P(B|A)P(C |A,B)P(D|A,B,C)

Applying the chain rule to compute the joint probability of words in a
sentence:

P(I am Gustave) = P(I)P(am|I)P(Gustave|I am)

Gustave Cortal 9 / 21

How to compute P(S)?

Definition of conditional probabilities:

P(B|A) = P(A,B)/P(A)

P(A,B) = P(A)P(B|A)

Applying the chain rule to multiple variables:

P(A,B,C ,D) = P(A)P(B|A)P(C |A,B)P(D|A,B,C)

Applying the chain rule to compute the joint probability of words in a
sentence:

P(I am Gustave) = P(I)P(am|I)P(Gustave|I am)

Gustave Cortal 9 / 21

How to compute P(S)?

Definition of conditional probabilities:

P(B|A) = P(A,B)/P(A)

P(A,B) = P(A)P(B|A)

Applying the chain rule to multiple variables:

P(A,B,C ,D) = P(A)P(B|A)P(C |A,B)P(D|A,B,C)

Applying the chain rule to compute the joint probability of words in a
sentence:

P(I am Gustave) = P(I)P(am|I)P(Gustave|I am)

Gustave Cortal 9 / 21

How to estimate these probabilities?

Can we just count and divide?

P(processing|I am Gustave, I love natural language) =
Count(I am Gustave, I love natural language processing)

Count(I am Gustave, I love natural language)

→ We’ll never see enough data for estimating long sentences

Gustave Cortal 10 / 21

How to estimate these probabilities?

Can we just count and divide?

P(processing|I am Gustave, I love natural language) =
Count(I am Gustave, I love natural language processing)

Count(I am Gustave, I love natural language)

→ We’ll never see enough data for estimating long sentences

Gustave Cortal 10 / 21

N-grams are Markov models

Markov assumption uses a limited context window to approximate
P(processing|I am Gustave, I love natural language)

P(processing) Unigram

P(processing|language) Bigram

P(processing|natural language) Trigram

→ Language has long-distance dependencies, therefore n-grams are
insufficient models of language

Gustave Cortal 11 / 21

N-grams are Markov models

Markov assumption uses a limited context window to approximate
P(processing|I am Gustave, I love natural language)

P(processing) Unigram

P(processing|language) Bigram

P(processing|natural language) Trigram

→ Language has long-distance dependencies, therefore n-grams are
insufficient models of language

Gustave Cortal 11 / 21

N-grams are Markov models

Markov assumption uses a limited context window to approximate
P(processing|I am Gustave, I love natural language)

P(processing) Unigram

P(processing|language) Bigram

P(processing|natural language) Trigram

→ Language has long-distance dependencies, therefore n-grams are
insufficient models of language

Gustave Cortal 11 / 21

Example: estimating bigram probabilities

Estimation using P(wi |wi−1) =
count(wi ,wi−1)
count(wi−1)

<s> I am Gustave </s>
<s> Gustave I am </s>
<s> I love natural language processing </s>

P(am|I) = count(am, I)
count(I)

=
2
3

Gustave Cortal 12 / 21

Example: estimating bigram probabilities

Estimation using P(wi |wi−1) =
count(wi ,wi−1)
count(wi−1)

<s> I am Gustave </s>
<s> Gustave I am </s>
<s> I love natural language processing </s>

P(am|I) = count(am, I)
count(I)

=
2
3

Gustave Cortal 12 / 21

How to evaluate performance?

We calculate probabilities on a training set and evaluate on the unseen
test set

We want a language model (LM) that best predicts the test set

Therefore, a good LM assigns a higher probability to the test set than
another LM

If the test set has n tokens, then P(test set) = P(w1,w2, ...,wn)

Pgood LM(test set) > Pbad LM(test set)

Gustave Cortal 13 / 21

How to evaluate performance?

We calculate probabilities on a training set and evaluate on the unseen
test set

We want a language model (LM) that best predicts the test set

Therefore, a good LM assigns a higher probability to the test set than
another LM

If the test set has n tokens, then P(test set) = P(w1,w2, ...,wn)

Pgood LM(test set) > Pbad LM(test set)

Gustave Cortal 13 / 21

How to evaluate performance?

We calculate probabilities on a training set and evaluate on the unseen
test set

We want a language model (LM) that best predicts the test set

Therefore, a good LM assigns a higher probability to the test set than
another LM

If the test set has n tokens, then P(test set) = P(w1,w2, ...,wn)

Pgood LM(test set) > Pbad LM(test set)

Gustave Cortal 13 / 21

Perplexity

Probability depends on the number of tokens, the longer the text, the
smaller the probability

→ We normalize by the number of tokens to have a metric per token:

Perplexity(test set) = P(w1,w2, ...,wn)
− 1

n

Perplexity is the inverse probability of the test set, normalized by the
length

Minimizing perplexity is the same as maximizing probability

Gustave Cortal 14 / 21

Perplexity

Probability depends on the number of tokens, the longer the text, the
smaller the probability

→ We normalize by the number of tokens to have a metric per token:

Perplexity(test set) = P(w1,w2, ...,wn)
− 1

n

Perplexity is the inverse probability of the test set, normalized by the
length

Minimizing perplexity is the same as maximizing probability

Gustave Cortal 14 / 21

Perplexity

Probability depends on the number of tokens, the longer the text, the
smaller the probability

→ We normalize by the number of tokens to have a metric per token:

Perplexity(test set) = P(w1,w2, ...,wn)
− 1

n

Perplexity is the inverse probability of the test set, normalized by the
length

Minimizing perplexity is the same as maximizing probability

Gustave Cortal 14 / 21

Practical issues

Due to unknown words, bigrams with zero probability drop sentence
probabilities to zero and prevent us from calculating perplexity

→ Add-1 smoothing pretends we saw each word one more time than we
did

P(wi |wi−1) =
count(wi ,wi−1) + 1
count(wi−1) + V

where V is the vocabulary size

To avoid underflow, every computation is performed in log space

log(p1 × p2 × p3) = log(p1) + log(p2) + log(p3)

Gustave Cortal 15 / 21

Practical issues

Due to unknown words, bigrams with zero probability drop sentence
probabilities to zero and prevent us from calculating perplexity

→ Add-1 smoothing pretends we saw each word one more time than we
did

P(wi |wi−1) =
count(wi ,wi−1) + 1
count(wi−1) + V

where V is the vocabulary size

To avoid underflow, every computation is performed in log space

log(p1 × p2 × p3) = log(p1) + log(p2) + log(p3)

Gustave Cortal 15 / 21

Practical issues

Due to unknown words, bigrams with zero probability drop sentence
probabilities to zero and prevent us from calculating perplexity

→ Add-1 smoothing pretends we saw each word one more time than we
did

P(wi |wi−1) =
count(wi ,wi−1) + 1
count(wi−1) + V

where V is the vocabulary size

To avoid underflow, every computation is performed in log space

log(p1 × p2 × p3) = log(p1) + log(p2) + log(p3)

Gustave Cortal 15 / 21

Better n-grams using backoff or interpolation methods

Backing off through progressively shorter context models under certain
conditions. For example, use trigram if count(wi ,wi−1,wi−2) > 0,
otherwise use bigram.

Interpolation methods train individual models for different n-gram
orders and then interpolate them together.

P̂(wn|wn−2,wn−1) = λ1P(wn|wn−2,wn−1) + λ2P(wn|wn−1) + λ3P(wn)

where
∑3

i=1 λi = 1

Gustave Cortal 16 / 21

Better n-grams using backoff or interpolation methods

Backing off through progressively shorter context models under certain
conditions. For example, use trigram if count(wi ,wi−1,wi−2) > 0,
otherwise use bigram.

Interpolation methods train individual models for different n-gram
orders and then interpolate them together.

P̂(wn|wn−2,wn−1) = λ1P(wn|wn−2,wn−1) + λ2P(wn|wn−1) + λ3P(wn)

where
∑3

i=1 λi = 1

Gustave Cortal 16 / 21

From n-gram to neural network language models

Neural network language models solve major problems with n-grams

▶ The number of parameters increases exponentially as the n-gram
order increases

▶ N-grams have no way to generalize from training to test set

Neural language models instead project words into a continuous space
in which words with similar contexts have similar representations

Gustave Cortal 17 / 21

How to represent word meaning?
Word meaning as a point in a multidimensional space

Figure: A three-dimensional affective space of connotative meaning by Osgood
et al. (1957)

Gustave Cortal 18 / 21

How to represent word meaning?

Defining meaning by linguistic distribution

The meaning of a word is its use in a language, Ludwig Wittgenstein
(1953)

If A and B have almost identical environments (words around them),
then they are synonyms, Zellig Harris (1954)

Gustave Cortal 19 / 21

How to represent word meaning?
Word meaning as a point in a multidimensional space + Defining
meaning by linguistic distribution = Defining meaning as a point in a
multidimensional space based on linguistic distribution

The meaning of a word is a vector called an embedding

Gustave Cortal 20 / 21

Components of a machine learning classifier

▶ A feature representation of the input x
▶ A classification function that computes the estimated class
▶ An objective function for learning (e.g., cross-entropy loss)
▶ An algorithm for optimizing the objective function (e.g., stochastic

gradient descent)

Gustave Cortal 21 / 21

Feedforward neural networks

Gustave Cortal

May 30, 2024

Gustave Cortal 1 / 22

Binary logistic regression

Gustave Cortal 2 / 22

Multinomial logistic regression

Gustave Cortal 3 / 22

Neural unit

y = σ(w · x + b) =
1

1 + exp(−(w · x + b))

Gustave Cortal 4 / 22

Activation functions (1)

Figure: Sigmoid function.

Gustave Cortal 5 / 22

Activation functions (2)

Figure: Tanh and ReLU functions.

y = tanh(z) =
ez − e−z

ez + e−z

y = ReLU(z) = max(z , 0)

Gustave Cortal 6 / 22

Feedforward network (1)

h = σ(Wx + b)

z = Uh

y = softmax(z)

Gustave Cortal 7 / 22

Feedforward network (2)

Figure: Feedforward network sentiment analysis using traditional hand-built
features.

Gustave Cortal 8 / 22

Feedforward network (3)

Figure: Feedforward network sentiment analysis using a pooled embedding.

Gustave Cortal 9 / 22

Without activation functions, a multi-layer NN is equivalent
to a single-layer NN

Consider the first two layers of a neural network with purely linear
transformations:

z [1] = W [1]x + b[1]

z [2] = W [2]z [1] + b[2]

The operations performed by the network can be combined and simplified
as follows:

z [2] = W [2](W [1]x + b[1]) + b[2]

= W [2]W [1]x +W [2]b[1] + b[2]

= W0x + b0

Gustave Cortal 10 / 22

Without activation functions, a multi-layer NN is equivalent
to a single-layer NN

Consider the first two layers of a neural network with purely linear
transformations:

z [1] = W [1]x + b[1]

z [2] = W [2]z [1] + b[2]

The operations performed by the network can be combined and simplified
as follows:

z [2] = W [2](W [1]x + b[1]) + b[2]

= W [2]W [1]x +W [2]b[1] + b[2]

= W0x + b0

Gustave Cortal 10 / 22

Loss function

The loss function for a single example x in the context of a multi-class
classification problem, with K output classes, is defined as the
cross-entropy loss LCE :

LCE (ŷ , y) = −
K∑

k=1

yk log(ŷk)

The loss LCE for a prediction ŷ and true label y , focusing on the correct
class c , is represented as:

LCE (ŷ , y) = − log(ŷc)

= − log

(
exp(zc)∑K
j=1 exp(zj)

)

Gustave Cortal 11 / 22

Loss function

The loss function for a single example x in the context of a multi-class
classification problem, with K output classes, is defined as the
cross-entropy loss LCE :

LCE (ŷ , y) = −
K∑

k=1

yk log(ŷk)

The loss LCE for a prediction ŷ and true label y , focusing on the correct
class c , is represented as:

LCE (ŷ , y) = − log(ŷc)

= − log

(
exp(zc)∑K
j=1 exp(zj)

)

Gustave Cortal 11 / 22

Computing the gradients

For deep networks, computing the gradients for each weight is difficult,
since we are computing the derivative with respect to weight parameters
that appear all the way back in the very early layers of the network

The solution to computing this gradient is an algorithm called error
backpropagation.

Gustave Cortal 12 / 22

Computing the gradients

For deep networks, computing the gradients for each weight is difficult,
since we are computing the derivative with respect to weight parameters
that appear all the way back in the very early layers of the network

The solution to computing this gradient is an algorithm called error
backpropagation.

Gustave Cortal 12 / 22

Forward pass

L(a, b, c) = c(a+ 2b)

Gustave Cortal 13 / 22

Backward pass

L(a, b, c) = c(a+ 2b)

Gustave Cortal 14 / 22

Backpropagation calculus, 3Blue1Brown’s video
https://www.youtube.com/watch?v=Ilg3gGewQ5U

Gustave Cortal 15 / 22

https://www.youtube.com/watch?v=Ilg3gGewQ5U

Feedforward NN for language modeling

A feedforward neural language model takes as input at time t a
representation of some number of previous words (wt−1,wt−2, etc.) and
outputs a probability distribution over possible next words

Like the n-gram, it approximates the probability of a word given the
entire prior context by approximating based on the n − 1 previous words:

P(wt |w1, ...,wt−1) ≈ P(wt |wt−N+1, ...,wt−1)

Unlike n-gram models, neural language models can handle much longer
histories, generalize better over contexts of similar words, and are more
accurate at word prediction.

Gustave Cortal 16 / 22

Feedforward NN for language modeling

A feedforward neural language model takes as input at time t a
representation of some number of previous words (wt−1,wt−2, etc.) and
outputs a probability distribution over possible next words

Like the n-gram, it approximates the probability of a word given the
entire prior context by approximating based on the n − 1 previous words:

P(wt |w1, ...,wt−1) ≈ P(wt |wt−N+1, ...,wt−1)

Unlike n-gram models, neural language models can handle much longer
histories, generalize better over contexts of similar words, and are more
accurate at word prediction.

Gustave Cortal 16 / 22

Feedforward NN for language modeling

A feedforward neural language model takes as input at time t a
representation of some number of previous words (wt−1,wt−2, etc.) and
outputs a probability distribution over possible next words

Like the n-gram, it approximates the probability of a word given the
entire prior context by approximating based on the n − 1 previous words:

P(wt |w1, ...,wt−1) ≈ P(wt |wt−N+1, ...,wt−1)

Unlike n-gram models, neural language models can handle much longer
histories, generalize better over contexts of similar words, and are more
accurate at word prediction.

Gustave Cortal 16 / 22

Feedforward NN for language modeling

The equations for a neural language model with a window size of 3, given
one-hot input vectors for each input context word, are:

e = [Ext−3;Ext−2;Ext−1]

h = σ(We + b)

z = Uh

ŷ = softmax(z)

Gustave Cortal 17 / 22

Feedforward NN for language modeling

Gustave Cortal 18 / 22

Embedding

Gustave Cortal 19 / 22

Embedding

Gustave Cortal 19 / 22

Feedforward NN for language modeling

Gustave Cortal 20 / 22

How to improve the training?

Find good hyperparameters: batch size, learning rate, activation
functions, number of hidden layers, number of neural units

Apply regularization methods: normalize input values, add dropout, add
weight decay

Other techniques include label smoothing, cutting gradients norm,
augmenting data, using good weights initialization, gradient descent with
momentum (Adam optimizer), etc.

Gustave Cortal 21 / 22

How to improve the training?

Find good hyperparameters: batch size, learning rate, activation
functions, number of hidden layers, number of neural units

Apply regularization methods: normalize input values, add dropout, add
weight decay

Other techniques include label smoothing, cutting gradients norm,
augmenting data, using good weights initialization, gradient descent with
momentum (Adam optimizer), etc.

Gustave Cortal 21 / 22

How to improve the training?

Find good hyperparameters: batch size, learning rate, activation
functions, number of hidden layers, number of neural units

Apply regularization methods: normalize input values, add dropout, add
weight decay

Other techniques include label smoothing, cutting gradients norm,
augmenting data, using good weights initialization, gradient descent with
momentum (Adam optimizer), etc.

Gustave Cortal 21 / 22

Exercices

Using PyTorch, you need to:

▶ Implement the logistic regression
▶ Implement a multi-layer feedforward network for text classification

based on word2vec features
▶ Play with hyperparameters (see slide "How to improve the training?")
▶ Implement a multi-layer feedforward network for language modeling

(optional)
▶ Study the skip-gram model (optional, see notebook from the last

course)

The goal is to have a workable PyTorch training loop for your project!

Gustave Cortal 22 / 22

Recurrent neural networks and attention
mechanisms

Gustave Cortal

May 30, 2024

Gustave Cortal 1 / 19

Introduction

Language is a temporal phenomenon

Feedforward neural networks assumed simultaneous access: for
language modeling, they look only at a fixed-size window of words, then
slide this window over the input

Recurrent neural networks handle the temporal nature of language
without using arbitrary fixed-sized windows: the hidden layer from the
previous step provides a memory that encodes earlier processing and
informs the decisions to be made at later steps

Gustave Cortal 2 / 19

Introduction

Language is a temporal phenomenon

Feedforward neural networks assumed simultaneous access: for
language modeling, they look only at a fixed-size window of words, then
slide this window over the input

Recurrent neural networks handle the temporal nature of language
without using arbitrary fixed-sized windows: the hidden layer from the
previous step provides a memory that encodes earlier processing and
informs the decisions to be made at later steps

Gustave Cortal 2 / 19

Introduction

Language is a temporal phenomenon

Feedforward neural networks assumed simultaneous access: for
language modeling, they look only at a fixed-size window of words, then
slide this window over the input

Recurrent neural networks handle the temporal nature of language
without using arbitrary fixed-sized windows: the hidden layer from the
previous step provides a memory that encodes earlier processing and
informs the decisions to be made at later steps

Gustave Cortal 2 / 19

Feedforward vs recurrent neural networks

Gustave Cortal 3 / 19

Recurrent neural networks

ht = g(Uht−1 +Wxt)

yt = softmax(Vht)

Gustave Cortal 4 / 19

Recurrent neural networks

Gustave Cortal 5 / 19

RNNs for language modeling

Gustave Cortal 6 / 19

Sampling

Gustave Cortal 7 / 19

RNNs for other tasks

Gustave Cortal 8 / 19

Stacked RNNs

Gustave Cortal 9 / 19

Bidirectional RNNs

Gustave Cortal 10 / 19

Training with encoder-decoder networks

Gustave Cortal 11 / 19

Inference with encoder-decoder networks

Gustave Cortal 12 / 19

Final hidden state as a fixed context vector for the decoder

Gustave Cortal 13 / 19

The final hidden state acts as a bottleneck

This final hidden state must represent everything about the meaning of
the source text

However, information at the beginning of the sentence may not be
equally well represented in the context vector

Gustave Cortal 14 / 19

The final hidden state acts as a bottleneck

This final hidden state must represent everything about the meaning of
the source text

However, information at the beginning of the sentence may not be
equally well represented in the context vector

Gustave Cortal 14 / 19

Attention mechanisms: introduction

The attention mechanism is a solution to the bottleneck problem: it
allows the decoder to get information from all the hidden states of the
encoder

The idea of attention is to create the single fixed-length vector c by
taking a weighted sum of all the encoder hidden states. The weights
focus on a particular part of the source text that is relevant to the token
the decoder is currently producing

Attention thus replaces the static context vector with one that is
dynamically derived from the encoder hidden states, different for each
token in

Gustave Cortal 15 / 19

Attention mechanisms: introduction

The attention mechanism is a solution to the bottleneck problem: it
allows the decoder to get information from all the hidden states of the
encoder

The idea of attention is to create the single fixed-length vector c by
taking a weighted sum of all the encoder hidden states. The weights
focus on a particular part of the source text that is relevant to the token
the decoder is currently producing

Attention thus replaces the static context vector with one that is
dynamically derived from the encoder hidden states, different for each
token in

Gustave Cortal 15 / 19

Attention mechanisms: introduction

The attention mechanism is a solution to the bottleneck problem: it
allows the decoder to get information from all the hidden states of the
encoder

The idea of attention is to create the single fixed-length vector c by
taking a weighted sum of all the encoder hidden states. The weights
focus on a particular part of the source text that is relevant to the token
the decoder is currently producing

Attention thus replaces the static context vector with one that is
dynamically derived from the encoder hidden states, different for each
token in

Gustave Cortal 15 / 19

Dot-product attention
The first step in computing ci is to compute how relevant each encoder
state is to the decoder state captured in hdi−1

Then, implement relevance as dot-product similarity:

score(hdi−1, h
e
j) = hdi−1 · hej

Then, apply a softmax to create a vector of weights, αij , that tells the
proportional relevance of each encoder hidden state j to the prior hidden
decoder state, hdi−1:

αij =
exp(score(hdi−1, h

e
j))∑

k exp(score(h
d
i−1, h

e
k))

Finally, compute a fixed-length context vector for the current decoder
state by taking a weighted average over all the encoder hidden states:

ci =
∑
j

αijh
e
j

Gustave Cortal 16 / 19

Dot-product attention
The first step in computing ci is to compute how relevant each encoder
state is to the decoder state captured in hdi−1

Then, implement relevance as dot-product similarity:

score(hdi−1, h
e
j) = hdi−1 · hej

Then, apply a softmax to create a vector of weights, αij , that tells the
proportional relevance of each encoder hidden state j to the prior hidden
decoder state, hdi−1:

αij =
exp(score(hdi−1, h

e
j))∑

k exp(score(h
d
i−1, h

e
k))

Finally, compute a fixed-length context vector for the current decoder
state by taking a weighted average over all the encoder hidden states:

ci =
∑
j

αijh
e
j

Gustave Cortal 16 / 19

Dot-product attention
The first step in computing ci is to compute how relevant each encoder
state is to the decoder state captured in hdi−1

Then, implement relevance as dot-product similarity:

score(hdi−1, h
e
j) = hdi−1 · hej

Then, apply a softmax to create a vector of weights, αij , that tells the
proportional relevance of each encoder hidden state j to the prior hidden
decoder state, hdi−1:

αij =
exp(score(hdi−1, h

e
j))∑

k exp(score(h
d
i−1, h

e
k))

Finally, compute a fixed-length context vector for the current decoder
state by taking a weighted average over all the encoder hidden states:

ci =
∑
j

αijh
e
j

Gustave Cortal 16 / 19

Dot-product attention
The first step in computing ci is to compute how relevant each encoder
state is to the decoder state captured in hdi−1

Then, implement relevance as dot-product similarity:

score(hdi−1, h
e
j) = hdi−1 · hej

Then, apply a softmax to create a vector of weights, αij , that tells the
proportional relevance of each encoder hidden state j to the prior hidden
decoder state, hdi−1:

αij =
exp(score(hdi−1, h

e
j))∑

k exp(score(h
d
i−1, h

e
k))

Finally, compute a fixed-length context vector for the current decoder
state by taking a weighted average over all the encoder hidden states:

ci =
∑
j

αijh
e
j

Gustave Cortal 16 / 19

Encoder-decoder networks with dot-product attention

Gustave Cortal 17 / 19

Long Short Term Memory network

Gustave Cortal 18 / 19

FNN vs RNN vs LSTM units

Gustave Cortal 19 / 19

Transformers

Gustave Cortal

May 30, 2024

Gustave Cortal 1 / 37

Transformers vs recurrent neural networks

The transformer offers new mechanisms (positional encodings and
self-attention) that help represent time and help focus on how words
relate to each other over long distances

Unlike RNNs, the computations at each time step are independent of
all the other steps and, therefore, can be performed in parallel

Gustave Cortal 2 / 37

Transformers vs recurrent neural networks

The transformer offers new mechanisms (positional encodings and
self-attention) that help represent time and help focus on how words
relate to each other over long distances

Unlike RNNs, the computations at each time step are independent of
all the other steps and, therefore, can be performed in parallel

Gustave Cortal 2 / 37

Transformer block

Gustave Cortal 3 / 37

Self-attention layer

Self-attention directly extracts and uses information from arbitrarily large
contexts without passing it through intermediate recurrent connections

Gustave Cortal 4 / 37

Self-attention layer

Self-attention directly extracts and uses information from arbitrarily large
contexts without passing it through intermediate recurrent connections

Gustave Cortal 4 / 37

Attention visualization

Gustave Cortal 5 / 37

Main idea of attention mechanisms

An attention-based approach is a set of comparisons to relevant items
in some context, a normalization of those scores to provide a probability
distribution, and a weighted sum using this distribution

Gustave Cortal 6 / 37

Dot-product attention
A dot product is the simplest form of comparison between elements in a
self-attention layer:

score(xi , xj) = xi · xj

Then, we normalize the scores with a softmax to create a vector of
weights, αij , that indicates the proportional relevance of each input j to
the input element i

αij = softmax(score(xi , xj)) ∀j ≤ i

=
exp(score(xi , xj))∑i

k=1 exp(score(xi , xk))
∀j ≤ i

Finally, we generate an output value yi by taking the sum of the inputs
seen so far, weighted by their respective α value.

yi =
∑
j≤i

αijxj

Gustave Cortal 7 / 37

Dot-product attention
A dot product is the simplest form of comparison between elements in a
self-attention layer:

score(xi , xj) = xi · xj

Then, we normalize the scores with a softmax to create a vector of
weights, αij , that indicates the proportional relevance of each input j to
the input element i

αij = softmax(score(xi , xj)) ∀j ≤ i

=
exp(score(xi , xj))∑i

k=1 exp(score(xi , xk))
∀j ≤ i

Finally, we generate an output value yi by taking the sum of the inputs
seen so far, weighted by their respective α value.

yi =
∑
j≤i

αijxj

Gustave Cortal 7 / 37

Dot-product attention
A dot product is the simplest form of comparison between elements in a
self-attention layer:

score(xi , xj) = xi · xj

Then, we normalize the scores with a softmax to create a vector of
weights, αij , that indicates the proportional relevance of each input j to
the input element i

αij = softmax(score(xi , xj)) ∀j ≤ i

=
exp(score(xi , xj))∑i

k=1 exp(score(xi , xk))
∀j ≤ i

Finally, we generate an output value yi by taking the sum of the inputs
seen so far, weighted by their respective α value.

yi =
∑
j≤i

αijxj

Gustave Cortal 7 / 37

Dot-product attention
A dot product is the simplest form of comparison between elements in a
self-attention layer:

score(xi , xj) = xi · xj

Then, we normalize the scores with a softmax to create a vector of
weights, αij , that indicates the proportional relevance of each input j to
the input element i

αij = softmax(score(xi , xj)) ∀j ≤ i

=
exp(score(xi , xj))∑i

k=1 exp(score(xi , xk))
∀j ≤ i

Finally, we generate an output value yi by taking the sum of the inputs
seen so far, weighted by their respective α value.

yi =
∑
j≤i

αijxj

Gustave Cortal 7 / 37

Attention with queries, keys and values
But transformers create a more sophisticated way of representing how
words can contribute to the representation of longer inputs. Consider the
three roles each input embedding plays during the attention process:

▶ As the current focus of attention when being compared to all of the
other preceding inputs → query

▶ In its role as a preceding input being compared to the current focus of
attention → key

▶ And finally, as a value used to compute the output for the current
focus of attention

To capture these three different roles, transformers introduce weight
matrices WQ , WK , and WV . These weights project each input vector xi
into a representation of its role as a key, query, or value:

qi = WQxi ,

ki = WKxi ,

vi = WV xi

xi ∈ Rd×1, WQ ∈ Rd×d , WK ∈ Rd×d , and WV ∈ Rd×d .

Gustave Cortal 8 / 37

Attention with queries, keys and values
But transformers create a more sophisticated way of representing how
words can contribute to the representation of longer inputs. Consider the
three roles each input embedding plays during the attention process:

▶ As the current focus of attention when being compared to all of the
other preceding inputs → query

▶ In its role as a preceding input being compared to the current focus of
attention → key

▶ And finally, as a value used to compute the output for the current
focus of attention

To capture these three different roles, transformers introduce weight
matrices WQ , WK , and WV . These weights project each input vector xi
into a representation of its role as a key, query, or value:

qi = WQxi ,

ki = WKxi ,

vi = WV xi

xi ∈ Rd×1, WQ ∈ Rd×d , WK ∈ Rd×d , and WV ∈ Rd×d .

Gustave Cortal 8 / 37

Attention with queries, keys and values
Given these projections, the score between a current focus of attention,
xi , and an element in the preceding context, xj , consists of a dot product
between its query vector qi and the preceding element’s key vectors kj :

score(xi , xj) = qi · kj

The output calculation for yi is now based on a weighted sum over the
value vectors v :

yi =
∑
j≤i

αijvj

Exponentiating large values can lead to numerical issues. To avoid this,
we scale the dot-product by a factor related to the size of the
embeddings:

score(xi , xj) =
qi · kj√

d

Gustave Cortal 9 / 37

Attention with queries, keys and values
Given these projections, the score between a current focus of attention,
xi , and an element in the preceding context, xj , consists of a dot product
between its query vector qi and the preceding element’s key vectors kj :

score(xi , xj) = qi · kj

The output calculation for yi is now based on a weighted sum over the
value vectors v :

yi =
∑
j≤i

αijvj

Exponentiating large values can lead to numerical issues. To avoid this,
we scale the dot-product by a factor related to the size of the
embeddings:

score(xi , xj) =
qi · kj√

d

Gustave Cortal 9 / 37

Attention with queries, keys and values
Given these projections, the score between a current focus of attention,
xi , and an element in the preceding context, xj , consists of a dot product
between its query vector qi and the preceding element’s key vectors kj :

score(xi , xj) = qi · kj

The output calculation for yi is now based on a weighted sum over the
value vectors v :

yi =
∑
j≤i

αijvj

Exponentiating large values can lead to numerical issues. To avoid this,
we scale the dot-product by a factor related to the size of the
embeddings:

score(xi , xj) =
qi · kj√

d

Gustave Cortal 9 / 37

Attention with queries, keys and values

Gustave Cortal 10 / 37

Parallelization

Since each output yi is computed independently, the entire process can
be parallelized by taking advantage of matrix multiplication

Input tokens are packed into a single matrix X ∈ RN×d . We multiply X
by the key, query, and value matrices:

Q = XWQ ; K = XWK ; V = XWV

Q ∈ RN×d , K ∈ RN×d , and V ∈ RN×d

We’ve reduced the self-attention step for a sequence of N tokens:

SelfAttention(Q,K ,V) = softmax
(
QKT

√
d

)
V

Gustave Cortal 11 / 37

Parallelization

Since each output yi is computed independently, the entire process can
be parallelized by taking advantage of matrix multiplication

Input tokens are packed into a single matrix X ∈ RN×d . We multiply X
by the key, query, and value matrices:

Q = XWQ ; K = XWK ; V = XWV

Q ∈ RN×d , K ∈ RN×d , and V ∈ RN×d

We’ve reduced the self-attention step for a sequence of N tokens:

SelfAttention(Q,K ,V) = softmax
(
QKT

√
d

)
V

Gustave Cortal 11 / 37

Parallelization

Since each output yi is computed independently, the entire process can
be parallelized by taking advantage of matrix multiplication

Input tokens are packed into a single matrix X ∈ RN×d . We multiply X
by the key, query, and value matrices:

Q = XWQ ; K = XWK ; V = XWV

Q ∈ RN×d , K ∈ RN×d , and V ∈ RN×d

We’ve reduced the self-attention step for a sequence of N tokens:

SelfAttention(Q,K ,V) = softmax
(
QKT

√
d

)
V

Gustave Cortal 11 / 37

Masked attention matrix

QKT results in a score for each query value to every key value, including
those that follow the query

This is inappropriate in language modeling since guessing the next word
is pretty simple if you already know it. To fix this, the elements in the
upper-triangular portion of the matrix are set to −∞

Gustave Cortal 12 / 37

Masked attention matrix

QKT results in a score for each query value to every key value, including
those that follow the query

This is inappropriate in language modeling since guessing the next word
is pretty simple if you already know it. To fix this, the elements in the
upper-triangular portion of the matrix are set to −∞

Gustave Cortal 12 / 37

Transformer block

Gustave Cortal 13 / 37

Multihead attention

Different words in a sentence can relate to each other in many different
ways simultaneously

It is difficult for a transformer block to capture all kinds of parallel
relations among its inputs

Transformers address this issue with multihead self-attention layers,
sets of self-attention layers, called heads, that reside in parallel layers at
the same depth in a model, each with its own set of parameters

Given these distinct sets of parameters, each head can learn different
aspects of the relationships among inputs at the same level of abstraction

Gustave Cortal 14 / 37

Multihead attention

Different words in a sentence can relate to each other in many different
ways simultaneously

It is difficult for a transformer block to capture all kinds of parallel
relations among its inputs

Transformers address this issue with multihead self-attention layers,
sets of self-attention layers, called heads, that reside in parallel layers at
the same depth in a model, each with its own set of parameters

Given these distinct sets of parameters, each head can learn different
aspects of the relationships among inputs at the same level of abstraction

Gustave Cortal 14 / 37

Multihead attention

Different words in a sentence can relate to each other in many different
ways simultaneously

It is difficult for a transformer block to capture all kinds of parallel
relations among its inputs

Transformers address this issue with multihead self-attention layers,
sets of self-attention layers, called heads, that reside in parallel layers at
the same depth in a model, each with its own set of parameters

Given these distinct sets of parameters, each head can learn different
aspects of the relationships among inputs at the same level of abstraction

Gustave Cortal 14 / 37

Multihead attention

Different words in a sentence can relate to each other in many different
ways simultaneously

It is difficult for a transformer block to capture all kinds of parallel
relations among its inputs

Transformers address this issue with multihead self-attention layers,
sets of self-attention layers, called heads, that reside in parallel layers at
the same depth in a model, each with its own set of parameters

Given these distinct sets of parameters, each head can learn different
aspects of the relationships among inputs at the same level of abstraction

Gustave Cortal 14 / 37

Multihead attention

Gustave Cortal 15 / 37

Multihead attention
To implement this notion, each head, i , in a self-attention layer is
provided with its own set of key, query, and value matrices: W K

i , WQ
i ,

and W V
i

In multi-head attention, instead of using the model dimension d that’s
used for the input and output from the model, the key and query
embeddings have dimensionality dk << d

MultiHeadAttention(X) = (head1 ⊕ head2 . . .⊕ headh)WO

Qi = XWQ
i ; Ki = XW K

i ; Vi = XW V
i

headi = SelfAttention(Qi ,Ki ,Vi)

X ∈ RN×d

WQ
i ∈ Rd×dk , W K

i ∈ Rd×dk , and W V
i ∈ Rd×dv

Q ∈ RN×dk , K ∈ RN×dk , and V ∈ RN×dv

WO ∈ Rhdv×d

Gustave Cortal 16 / 37

Multihead attention
To implement this notion, each head, i , in a self-attention layer is
provided with its own set of key, query, and value matrices: W K

i , WQ
i ,

and W V
i

In multi-head attention, instead of using the model dimension d that’s
used for the input and output from the model, the key and query
embeddings have dimensionality dk << d

MultiHeadAttention(X) = (head1 ⊕ head2 . . .⊕ headh)WO

Qi = XWQ
i ; Ki = XW K

i ; Vi = XW V
i

headi = SelfAttention(Qi ,Ki ,Vi)

X ∈ RN×d

WQ
i ∈ Rd×dk , W K

i ∈ Rd×dk , and W V
i ∈ Rd×dv

Q ∈ RN×dk , K ∈ RN×dk , and V ∈ RN×dv

WO ∈ Rhdv×d

Gustave Cortal 16 / 37

Multihead attention
To implement this notion, each head, i , in a self-attention layer is
provided with its own set of key, query, and value matrices: W K

i , WQ
i ,

and W V
i

In multi-head attention, instead of using the model dimension d that’s
used for the input and output from the model, the key and query
embeddings have dimensionality dk << d

MultiHeadAttention(X) = (head1 ⊕ head2 . . .⊕ headh)WO

Qi = XWQ
i ; Ki = XW K

i ; Vi = XW V
i

headi = SelfAttention(Qi ,Ki ,Vi)

X ∈ RN×d

WQ
i ∈ Rd×dk , W K

i ∈ Rd×dk , and W V
i ∈ Rd×dv

Q ∈ RN×dk , K ∈ RN×dk , and V ∈ RN×dv

WO ∈ Rhdv×d

Gustave Cortal 16 / 37

Transformer block

Gustave Cortal 17 / 37

Residual connections

Residual connections pass information from a lower layer to a higher layer
without going through the intermediate layer

Allowing information from the activation going forward and the gradient
going backward to skip a layer improves learning and gives higher-level
layers direct access to information from lower layers

If we think of a layer as one long vector of units, the resulting function
computed in a transformer block can be expressed as:

O = LayerNorm(X + SelfAttention(X))

H = LayerNorm(O + FFN(O))

Gustave Cortal 18 / 37

Residual connections

Residual connections pass information from a lower layer to a higher layer
without going through the intermediate layer

Allowing information from the activation going forward and the gradient
going backward to skip a layer improves learning and gives higher-level
layers direct access to information from lower layers

If we think of a layer as one long vector of units, the resulting function
computed in a transformer block can be expressed as:

O = LayerNorm(X + SelfAttention(X))

H = LayerNorm(O + FFN(O))

Gustave Cortal 18 / 37

Residual connections

Residual connections pass information from a lower layer to a higher layer
without going through the intermediate layer

Allowing information from the activation going forward and the gradient
going backward to skip a layer improves learning and gives higher-level
layers direct access to information from lower layers

If we think of a layer as one long vector of units, the resulting function
computed in a transformer block can be expressed as:

O = LayerNorm(X + SelfAttention(X))

H = LayerNorm(O + FFN(O))

Gustave Cortal 18 / 37

Transformer block

Gustave Cortal 19 / 37

Layer normalization

O = LayerNorm(X + SelfAttention(X))

H = LayerNorm(O + FFN(O))

We calculate the mean, µ, and standard deviation, σ, over the elements
of the vector to be normalized. Given a hidden layer with dimensionality
d , these values are calculated as follows:

µ =
1
d

d∑
i=1

xi

σ =

√√√√ 1
d

d∑
i=1

(xi − µ)2

x̂ =
(x − µ)

σ

Gustave Cortal 20 / 37

Layer normalization

O = LayerNorm(X + SelfAttention(X))

H = LayerNorm(O + FFN(O))

We calculate the mean, µ, and standard deviation, σ, over the elements
of the vector to be normalized. Given a hidden layer with dimensionality
d , these values are calculated as follows:

µ =
1
d

d∑
i=1

xi

σ =

√√√√ 1
d

d∑
i=1

(xi − µ)2

x̂ =
(x − µ)

σ

Gustave Cortal 20 / 37

Positional encoding

Train positional embeddings or use a static function that maps integer
inputs to real-values vectors

Gustave Cortal 21 / 37

Language model head

Gustave Cortal 22 / 37

Language modeling using next word prediction

Gustave Cortal 23 / 37

Conditional generation

Gustave Cortal 24 / 37

Causal vs bidirectional language model

Gustave Cortal 25 / 37

Attention matrix for bidirectional language model

Gustave Cortal 26 / 37

Masked language modeling

Gustave Cortal 27 / 37

Sequence classification

Gustave Cortal 28 / 37

Token classification

Gustave Cortal 29 / 37

Transformer architecture from Attention is All you Need

Gustave Cortal 30 / 37

Architecture, size, and hyperparameters of GPT-3 from
Language Models are Few-Shot Learners

Gustave Cortal 31 / 37

Conclusion
Tokenization is splitting text into individual tokens

A language model is a probabilistic model that can compute the
probability of a sequence of words and compute the probability of an
upcoming word

N-grams are simple probabilistic language models based on Markov
assumption

Naive bayes classifiers are generative models based on class-specific
unigram

Embedding represents word meaning as a vector

Logistic regressions are discriminative models based on the sigmoid
function

Feedforward neural networks handle longer inputs and generalize better
compared to N-grams thanks to embeddings, have fixed context windows

Gustave Cortal 32 / 37

Conclusion
Tokenization is splitting text into individual tokens

A language model is a probabilistic model that can compute the
probability of a sequence of words and compute the probability of an
upcoming word

N-grams are simple probabilistic language models based on Markov
assumption

Naive bayes classifiers are generative models based on class-specific
unigram

Embedding represents word meaning as a vector

Logistic regressions are discriminative models based on the sigmoid
function

Feedforward neural networks handle longer inputs and generalize better
compared to N-grams thanks to embeddings, have fixed context windows

Gustave Cortal 32 / 37

Conclusion
Tokenization is splitting text into individual tokens

A language model is a probabilistic model that can compute the
probability of a sequence of words and compute the probability of an
upcoming word

N-grams are simple probabilistic language models based on Markov
assumption

Naive bayes classifiers are generative models based on class-specific
unigram

Embedding represents word meaning as a vector

Logistic regressions are discriminative models based on the sigmoid
function

Feedforward neural networks handle longer inputs and generalize better
compared to N-grams thanks to embeddings, have fixed context windows

Gustave Cortal 32 / 37

Conclusion
Tokenization is splitting text into individual tokens

A language model is a probabilistic model that can compute the
probability of a sequence of words and compute the probability of an
upcoming word

N-grams are simple probabilistic language models based on Markov
assumption

Naive bayes classifiers are generative models based on class-specific
unigram

Embedding represents word meaning as a vector

Logistic regressions are discriminative models based on the sigmoid
function

Feedforward neural networks handle longer inputs and generalize better
compared to N-grams thanks to embeddings, have fixed context windows

Gustave Cortal 32 / 37

Conclusion
Tokenization is splitting text into individual tokens

A language model is a probabilistic model that can compute the
probability of a sequence of words and compute the probability of an
upcoming word

N-grams are simple probabilistic language models based on Markov
assumption

Naive bayes classifiers are generative models based on class-specific
unigram

Embedding represents word meaning as a vector

Logistic regressions are discriminative models based on the sigmoid
function

Feedforward neural networks handle longer inputs and generalize better
compared to N-grams thanks to embeddings, have fixed context windows

Gustave Cortal 32 / 37

Conclusion
Tokenization is splitting text into individual tokens

A language model is a probabilistic model that can compute the
probability of a sequence of words and compute the probability of an
upcoming word

N-grams are simple probabilistic language models based on Markov
assumption

Naive bayes classifiers are generative models based on class-specific
unigram

Embedding represents word meaning as a vector

Logistic regressions are discriminative models based on the sigmoid
function

Feedforward neural networks handle longer inputs and generalize better
compared to N-grams thanks to embeddings, have fixed context windows

Gustave Cortal 32 / 37

Conclusion
Tokenization is splitting text into individual tokens

A language model is a probabilistic model that can compute the
probability of a sequence of words and compute the probability of an
upcoming word

N-grams are simple probabilistic language models based on Markov
assumption

Naive bayes classifiers are generative models based on class-specific
unigram

Embedding represents word meaning as a vector

Logistic regressions are discriminative models based on the sigmoid
function

Feedforward neural networks handle longer inputs and generalize better
compared to N-grams thanks to embeddings, have fixed context windows

Gustave Cortal 32 / 37

Conclusion

Recurrent neural networks handle temporal data inherently in the
architecture, have infinite context windows, hidden states have local
information

Information flow is better in gated recurrent networks due to better
context management

Attention mechanisms solve the bottleneck problem to produce
dynamically derived context vectors

Transformers use self-attention layers combined with feedforward layers
to handle more complex distant relationships between tokens, enable
parallelization due to independent computation between tokens, have
fixed context windows

Gustave Cortal 33 / 37

Conclusion

Recurrent neural networks handle temporal data inherently in the
architecture, have infinite context windows, hidden states have local
information

Information flow is better in gated recurrent networks due to better
context management

Attention mechanisms solve the bottleneck problem to produce
dynamically derived context vectors

Transformers use self-attention layers combined with feedforward layers
to handle more complex distant relationships between tokens, enable
parallelization due to independent computation between tokens, have
fixed context windows

Gustave Cortal 33 / 37

Conclusion

Recurrent neural networks handle temporal data inherently in the
architecture, have infinite context windows, hidden states have local
information

Information flow is better in gated recurrent networks due to better
context management

Attention mechanisms solve the bottleneck problem to produce
dynamically derived context vectors

Transformers use self-attention layers combined with feedforward layers
to handle more complex distant relationships between tokens, enable
parallelization due to independent computation between tokens, have
fixed context windows

Gustave Cortal 33 / 37

Conclusion

Recurrent neural networks handle temporal data inherently in the
architecture, have infinite context windows, hidden states have local
information

Information flow is better in gated recurrent networks due to better
context management

Attention mechanisms solve the bottleneck problem to produce
dynamically derived context vectors

Transformers use self-attention layers combined with feedforward layers
to handle more complex distant relationships between tokens, enable
parallelization due to independent computation between tokens, have
fixed context windows

Gustave Cortal 33 / 37

Ressources

Alammar, J. The Illustrated Transformer.
https://jalammar.github.io/illustrated-transformer/

Alammar, J. The Illustrated GPT-2.
https://jalammar.github.io/illustrated-gpt2/

3Blue1Brown’s videos on neural networks. https://www.youtube.com/
playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi

Gustave Cortal 34 / 37

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-gpt2/
https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi

Ressources

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.
N., Kaiser, L., & Polosukhin, I. Attention Is All You Need. arXiv.
https://doi.org/10.48550/arXiv.1706.03762

Phuong, M., & Hutter, M. Formal Algorithms for Transformers. arXiv.
https://doi.org/10.48550/arXiv.2207.09238

Amirhossein Kazemnejad’s blog. Transformer Architecture: The
Positional Encoding. https://kazemnejad.com/blog/transformer_
architecture_positional_encoding/

Weng, L. Attention? Attention!
https://lilianweng.github.io/posts/2018-06-24-attention/

Gustave Cortal 35 / 37

https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.2207.09238
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/
https://lilianweng.github.io/posts/2018-06-24-attention/

Ressources
Harvard NLP. The Annotated Transformer.
https://nlp.seas.harvard.edu/annotated-transformer/

Peter Bloem. Transformers from scratch.
https://peterbloem.nl/blog/transformers

Andrej Karpathy. Let’s build GPT: From scratch, in code, spelled out.
https://www.youtube.com/watch?v=kCc8FmEb1nY

Warner, B. Creating a Transformer From Scratch - Part One: The
Attention Mechanism. https:
//benjaminwarner.dev/2023/07/01/attention-mechanism.html

Warner, B. Creating a Transformer From Scratch - Part Two: The Rest
of the Transformer. https://benjaminwarner.dev/2023/07/28/
rest-of-the-transformer.html

Raschka, S. Understanding and coding the self-attention mechanism from
scratch. https://sebastianraschka.com/blog/2023/
self-attention-from-scratch.html

Gustave Cortal 36 / 37

https://nlp.seas.harvard.edu/annotated-transformer/
https://peterbloem.nl/blog/transformers
https://www.youtube.com/watch?v=kCc8FmEb1nY
https://benjaminwarner.dev/2023/07/01/attention-mechanism.html
https://benjaminwarner.dev/2023/07/01/attention-mechanism.html
https://benjaminwarner.dev/2023/07/28/rest-of-the-transformer.html
https://benjaminwarner.dev/2023/07/28/rest-of-the-transformer.html
https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html
https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html

Ressources

Collège de France, « Apprendre les langues aux machines »:
https://www.college-de-france.fr/fr/agenda/cours/
apprendre-les-langues-aux-machines

Dan Jurafsky and James H. Martin, Speech and Language Processing :
https:
//web.stanford.edu/~jurafsky/slp3/ed3bookfeb3_2024.pdf

3Blue1Brown, Essence of linear algebra and Neural Networks playlists :
https://www.youtube.com/@3blue1brown/playlists

AI News: we summarize top AI discords + AI reddits + AI X/Twitters,
and send you a roundup each day!
https://buttondown.email/ainews

Gustave Cortal 37 / 37

https://www.college-de-france.fr/fr/agenda/cours/apprendre-les-langues-aux-machines
https://www.college-de-france.fr/fr/agenda/cours/apprendre-les-langues-aux-machines
https://web.stanford.edu/~jurafsky/slp3/ed3bookfeb3_2024.pdf
https://web.stanford.edu/~jurafsky/slp3/ed3bookfeb3_2024.pdf
https://www.youtube.com/@3blue1brown/playlists
https://buttondown.email/ainews

	statistical_language_modeling_from_n_grams_to_transformers_gdtiaens (1).pdf (p.1-36)
	EPITA_cours_neural_networks (1).pdf (p.37-66)
	EPITA_cours_rnn_attention (1).pdf (p.67-93)
	EPITA_cours_transformers (2).pdf (p.94-158)

