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ELIZA, one of the first chatbot

User: I am unhappy.
ELIZA: DO YOU THINK COMING HERE WILL HELP YOU NOT TO BE UNHAPPY
User: I need some help, that much seems certain.
ELIZA: WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP
User: Perhaps I could learn to get along with my mother.
ELIZA: TELL ME MORE ABOUT YOUR FAMILY
User: My mother takes care of me.
ELIZA: WHO ELSE IN YOU FAMILY TAKES CARE OF YOU
User: My father.
ELIZA: YOUR FATHER
User: You are like my father in some ways.
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ELIZA, one of the first chatbot

▶ Uses pattern matching to recognize phrases like “I need X” and
translate them into outputs like “What would it mean to you if you
got X?”

▶ Pattern-based methods play a crucial role in NLP
▶ Famous tool for describing text patterns: the regular expression
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Regular expression (regex)

What are regular expressions?
A sequence of characters that define a search pattern, primarily used for
string matching and manipulation.

Commonly used symbols
▶ . (Dot): Matches any single character.
▶ \d: Matches any digit.
▶ \w: Matches any word character (alphanumeric & underscore).
▶ \s: Matches any whitespace character.
▶ *, +: Match 0 or more, 1 or more occurrences of the preceding

element, respectively.
▶ ˆ, $: Start and end of a string, respectively.
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ELIZA’s pattern recognition

Regex example in ELIZA
"ˆ[Ii] (do not|don’t) know"

Detailed breakdown
▶ ˆ[Ii]: Matches "I" in both uppercase and lowercase at the start of a

sentence
▶ (do not|don’t): Captures either "do not" or the contraction

"don’t"

Example interaction
▶ User: "I don’t know what to do."
▶ ELIZA: "Why do you think you don’t know what to do?"

Gustave Cortal 7 / 30



Tokenization

Gustave Cortal 8 / 30



What is a word?

Example 1
Hey!! How are you? :)

Example 2
I do uh main- mainly business data processing.

Example 3
They are studying because they want to succeed.

Example 4
We love the cats of Jean, but we don’t like this cat.
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Tokenization: principles

▶ Tokenization is splitting text into individual words or tokens.
▶ Essential for NLP tasks
▶ Multiple challenges:

▶ Different delimiters: spaces, punctuation
▶ Contractions: "can’t" → "can not"
▶ Special cases: dates, numbers, URLs, hashtags, email addresses

Gustave Cortal 10 / 30



Tokenization: basic example

Input
"Natural language processing enables computers to understand human
language."

Tokenized output
Natural, language, processing, enables, computers, to, understand,
human, language, .
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Tokenization: dealing with contraction

Input
"I can’t believe it’s already 2023!"

Tokenization with contraction
I, can’t, believe, it’s, already, 2023, !

Tokenization with expansion
I, can, not, believe, it, is, already, 2023, !
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Tokenization: complex example

Input
"Dr. Smith’s email, dr.smith@example.com, isn’t working since
01/02/2023; try reaching out at (555) 123-4567 in San Francisco."

Tokenized output
Dr., Smith’s, email, „ dr.smith@example.com, „ isn’t, working, since,
01/02/2023, ;, try, reaching, out, at, (, 555, ), 123-4567, in, San
Francisco, .
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Tokenization: methods

Rule-based approach
Use predefined rules, like splitting by spaces or punctuation.

Machine learning approach
Learn from data to handle complex cases

Library support
NLTK, SpaCy
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Tokenization: Byte-Pair Encoding (BPE)

Learn the tokenization
Instead of defining tokens as words, or as characters, we can use our data
to automatically induce sets of tokens that include tokens smaller than
words, called subwords

Training and testing
NLP algorithms learn some patterns from one corpus (a training set) and
then use these patterns to make decisions about a separate corpus (a test
set)
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Tokenization: Byte-Pair Encoding (BPE)

Problem
How to deal with unknown words?

Unknown word as composed of known subwords
Every unknown word like lower can be represented by some sequence of
known subword units, such as low and er
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Tokenization: Byte-Pair Encoding (BPE)

Initialization
The BPE token learner begins with a vocabulary that is the set of all
individual characters

Algorithm
Examines the training corpus, chooses the two symbols that are most
frequently adjacent (say ‘A’, ‘B’), adds a new merged symbol ‘AB’ to the
vocabulary, and replaces every adjacent ’A’ ’B’ in the corpus with the
new ‘AB’. It continues to count and merge, creating new longer and
longer character strings, until k merges have been done
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Applying BPE on an example

Corpus vocabulary with frequencies

5 l o w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

Initial vocabulary
Unique characters: l, o, w, d, e, i, n, r, s, t
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Most frequent pair (e, r)
Merge ’e’ and ’r’ into ’er’. New vocabulary: l, o, w, d, e, i, n, r, s, t, er
Updated corpus:

5 l o w
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next frequent pair (n, e)
Merge ’n’ and ’e’ into ’ne’. New vocabulary: l, o, w, d, e, i, n, r, s, t, er,
ne Updated corpus:

5 l o w
2 l o w e s t
6 ne w er
3 w i d er
2 ne w
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Sequence of merges
1. Merge (ne, w). New vocabulary: d, e, i, l, n, o, r, s, t, w, er, ne, new
2. Merge (l, o). New vocabulary: d, e, i, l, n, o, r, s, t, w, er, ne, new, lo
3. Merge (lo, w). New vocabulary: d, e, i, l, n, o, r, s, t, w, er, ne, new,

lo, low
4. Merge (new, er). New vocabulary: d, e, i, l, n, o, r, s, t, w, er, ne,

new, lo, low, newer
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To tokenize a text, always apply the merge rules in the order they were
learned during training

This fixed, sequential order is what makes the tokenization deterministic
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Language diversity
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Beyond English
Current trends often focus on English, overlooking the necessity of
testing algorithms on a diverse range of languages

Varieties of language
Most languages have multiple dialects or varieties influenced by regions or
social groups

Variation in genre
Algorithms encounter text from various genres: newswires, books,
scientific articles, Wikipedia, religious texts, spoken conversations, etc

Demographic influence
The demographic characteristics of writers or speakers (age, gender, race,
socioeconomic class) impact the linguistic properties of texts

Temporal influence
Language evolves over time (Old French vs. Current French)
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Datasheet
A datasheet specifies the properties of a dataset:

▶ Motivation: Why was the corpus collected, by whom, and who
funded it?

▶ Situation: When and in what situation was the text written/spoken?
For example, was there a task? Was the language originally spoken
conversation, edited text, or social media communication?

▶ Language variety: What language was the corpus in?
▶ Speaker demographics: What was, e.g., the age or gender of the

text’s authors?
▶ Collection process: How big is the data? If it is a subsample, how

was it sampled? Was the data collected with consent? How was the
data pre-processed, and what metadata is available?

▶ Annotation process: What are the annotations, what are the
demographics of the annotators, how were they trained, and how was
the data annotated?

▶ Distribution: Are there a copyright or other intellectual property
restrictions?
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Definitions
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Definitions

Text normalization
The process of transforming text into a more uniform format, facilitating
easier processing

Lemma
The base form of a word. Lemmatization involves reducing inflected
words to their lemma form (e.g., "running" to "run")

Corpus
A structured collection of texts. It serves as a dataset for various
language processing tasks

Token
A single, meaningful element in a text. Tokenization is the process of
splitting text into tokens
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Definitions

Training corpus
A dataset used to train a NLP model. It teaches the model to recognize
patterns and make predictions

Test corpus
A separate dataset used to evaluate the model performance

Vocabulary
The set of unique tokens a model uses for processing
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Exercices
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Exercices

▶ Using regular expressions, create a tokenizer handling some complex
examples (∼30m)

▶ Using regular expressions, create an ELIZA-like system (∼30m)
▶ Implement Byte-Pair Encoding from scratch (∼1h)
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Pseudo-code for BPE

function BYTE -PAIR ENCODING(strings C, number of merges k)
V ← all unique characters in C # initial set of tokens
for i ← 1 to k do # merge tokens k times

tL, tR ← Most frequent pair of adjacent tokens in C
tNEW ← tL + tR # make new token by concatenating
V ← V + tNEW # update the vocabulary
Replace each occurrence of tL , tR in C with tNEW
# update the corpus

return V
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