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Tokenization

Tokenization is splitting text into individual words or tokens

Multiple challenges:

▶ Different delimiters: spaces, punctuation
▶ Contractions: "can’t" → "can not"
▶ Special cases: dates, numbers, URLs, hashtags, email addresses
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Tokenization

Input
"Natural language processing enables computers to understand human
language."

Tokenized output
Natural, language, processing, enables, computers, to, understand,
human, language, .
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Tokenization

Input
"Dr. Smith’s email, dr.smith@example.com, isn’t working since
01/02/2023; try reaching out at (555) 123-4567 in San Francisco."

Tokenized output
Dr., Smith’s, email, „ dr.smith@example.com, „ isn’t, working, since,
01/02/2023, ;, try, reaching, out, at, (, 555, ), 123-4567, in, San
Francisco, .
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Tokenization

Rule-based approach
Use predefined rules, like splitting by spaces or punctuation using regular
expressions

Machine learning approach
Learn from data to handle complex cases, e.g., using Byte-Pair Encoding
subword tokenization
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Language model
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What is a language model?

A language model is a probabilistic model that:

▶ computes the probability of a sequence of words S
P(S) = P(w1,w2, ...,wn)

▶ computes the probability of an upcoming word
P(w5|w1,w2,w3,w4)

Useful for building conversational agents, performing translation, speech
recognition, summarization, question-answering, classification, etc.

For example, for speech recognition:
P(I saw a van) >> P(eyes awe of an)
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How to compute P(S)?

Definition of conditional probabilities:

P(B|A) = P(A,B)/P(A)

P(A,B) = P(A)P(B|A)

Applying the chain rule to multiple variables:

P(A,B,C ,D) = P(A)P(B|A)P(C |A,B)P(D|A,B,C )

Applying the chain rule to compute the joint probability of words in a
sentence:

P(I am Gustave) = P(I)P(am|I)P(Gustave|I am)
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How to estimate these probabilities?

Can we just count and divide?

P(processing|I am Gustave, I love natural language) =
Count(I am Gustave, I love natural language processing)

Count(I am Gustave, I love natural language)

→ We’ll never see enough data for estimating long sentences
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N-grams
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N-grams are Markov models

Markov assumption uses a limited context window to approximate
P(processing|I am Gustave, I love natural language)

P(processing) Unigram

P(processing|language) Bigram

P(processing|natural language) Trigram

→ Language has long-distance dependencies. Therefore, n-grams are
insufficient models of language
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Example: estimating bigram probabilities

Estimation using P(wi |wi−1) =
count(wi ,wi−1)
count(wi−1)

<s> I am Gustave </s>
<s> Gustave I am </s>
<s> I love natural language processing </s>

P(am|I) = count(am, I)
count(I)

=
2
3

Gustave Cortal 14 / 28



How to evaluate performance?

We calculate probabilities on a training set and evaluate on the unseen
test set

We want a language model (LM) that best predicts the test set

Therefore, a good LM assigns a higher probability to the test set than
another LM

If the test set has n tokens, then P(test set) = (w1,w2, ...,wn)

Pgood LM(test set) > Pbad LM(test set)
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Perplexity

Probability depends on the number of tokens, the longer the text, the
smaller the probability

→ We normalize by the number of tokens to have a metric per token:

Perplexity(test set) = P(w1,w2, ...,wn)
− 1

N

Perplexity is the inverse probability of the test set, normalized by the
length

Minimizing perplexity is the same as maximizing probability
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Perplexity and Entropy

Entropy (H) measures the average uncertainty in a probability
distribution. For a language model:

H = −
∑
w∈V

P(w) log2 P(w)

Perplexity is the exponential of the entropy, it represents the effective
number of choices the model faces:

Perplexity = 2H

If H = 3 bits, then Perplexity = 23 = 8, meaning that, on average, the
model is as uncertain as if it had to choose uniformly among 8 options
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Practical issues

Due to unknown words, bigrams with zero probability drop sentence
probabilities to zero and prevent us from calculating perplexity

→ Add-1 smoothing pretends we saw each word one more time than we
did

P(wi |wi−1) =
count(wi ,wi−1) + 1
count(wi−1) + |V |

where |V | is the vocabulary size

To avoid underflow, every computation is performed in log space

log(p1 × p2 × p3) = log(p1) + log(p2) + log(p3)
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Better n-grams using backoff or interpolation methods

Backing off through progressively shorter context models under certain
conditions. For example, use trigram if count(wi ,wi−1,wi−2) > 0,
otherwise use bigram

Interpolation methods train individual models for different n-gram
orders and then interpolate them together

P̂(wn|wn−2,wn−1) = λ1P(wn|wn−2,wn−1) + λ2P(wn|wn−1) + λ3P(wn)

where
∑3

i=1 λi = 1
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From n-gram to neural network language models
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From n-gram to neural network language models

Neural network language models solve major problems with n-grams

▶ The number of parameters increases exponentially as the n-gram
order increases

▶ N-grams have no way to generalize from training to test set

Neural language models instead project words into a continuous space
in which words with similar contexts have similar representations
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How to represent word meaning?
Word meaning as a point in a multidimensional space

Figure: A three-dimensional affective space of connotative meaning by Osgood
et al. (1957)
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How to represent word meaning?

Defining meaning by linguistic distribution

The meaning of a word is its use in a language, Ludwig Wittgenstein
(1953)

If A and B have almost identical environments (words around them),
then they are synonyms, Zellig Harris (1954)
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How to represent word meaning?
Word meaning as a point in a multidimensional space + Defining
meaning by linguistic distribution = Defining meaning as a point in a
multidimensional space based on linguistic distribution

The meaning of a word is a vector called an embedding
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Components of a machine learning classifier

▶ A feature representation of the input x
▶ A classification function that computes the estimated class
▶ An objective function for learning (e.g., cross-entropy loss)
▶ An algorithm for optimizing the objective function (e.g., stochastic

gradient descent)

Gustave Cortal 25 / 28



Bibliographical and historical notes

▶ Markov (1913) used Markov chains (bigrams/trigrams) to predict
vowels vs. consonants in Pushkin’s Eugene Onegin

▶ Shannon (1948) applied n-grams to approximate English word
sequences

▶ Chomsky (1950s–1960s) argued that finite-state Markov processes
are inadequate models of human grammatical knowledge, which led
many linguists to disregard statistical approaches for decades

▶ Neural network language models address n-gram limitations
(parameter growth and generalization issues) by embedding words in
continuous vector spaces and are now the standard in large language
models
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Exercices
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Exercices

▶ Implement n-gram language models from scratch (tokenize text,
compute probabilities, calculate perplexity, perform greedy sampling)

▶ If you have time, implement backoff, interpolation, and better
sampling methods such as top-p and top-k

▶ Form groups for the project and discuss possible datasets
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