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Supervised machine learning

Input
a document d
a fixed set of classes C = c1, c2, ..., cJ
a training set of m hand-labeled documents (d1, c1), ..., (dm, cm)

Output
a learned classifier γ : d → c

Some methods
Naïve Bayes
Logistic Regression
Support-Vector Machines
k-Nearest Neighbors
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Bayes’ rule applied to documents

For a document d and a class c :

P(c |d) = P(d |c)P(c)
P(d)

P(d |c) is the likelihood
P(c) is the prior
We drop the denominator P(d)

The classifier selects the most likely class:

cmax = argmax
c∈C

P(c |d)
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Logistic regression
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Generative and discriminative classifiers
Generative classifier
The classifier learns how the data was generated
For a document d and a class c :

P(c |d) = P(d |c)P(c)
P(d)

We learn the likelihood and the prior: P(d |c) and P(c)

ĉ = argmax
c∈C

P(d |c)P(c)

Discriminative classifier
The classifier directly learns the decision boundary between classes
We learn the posterior P(c |d) directly

ĉ = argmax
c∈C

P(c |d)

Gustave Cortal 7 / 46



Generative classifier

Suppose we want to predict whether an image corresponds to a cat or a
dog

A generative cat model learns the cat characteristics
A generative dog model learns the dog characteristics
Characteristics can be shapes, colors, eyes, etc.

Given a new image, we run both models and see which one assigns a
greater probability of generating this image
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Discriminative classifier

Suppose we want to predict whether an image corresponds to a cat or a
dog

A discriminative model learns to distinguish dogs from cats directly
For example, a dog has no mustache compared to a cat

Given a new image, we use the decision boundary of the discriminative
model to determine whether it is a cat or a dog

Gustave Cortal 9 / 46



Components of a machine learning classifier

Given m input and output pairs (x i , y i ):

▶ A feature representation of the input (eg, Bag-of-Words). For each
input observation x i , a vector of features [x1, x2, . . . , xn]. Feature j for
input x i is x ij

▶ A classification function that computes ŷ , the estimated class (eg,
logistic regression)

▶ An objective function for learning (eg, cross-entropy loss)
▶ An optimization algorithm for minimizing or maximizing the

objective function (eg, stochastic gradient descent)
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Weights

Input: x = [x1, x2, . . . , xn]
Weights: w = [w1,w2, . . . ,wn]
Output: a predicted class ŷ ∈ {0, 1}

How to learn a classification function that takes input and weight vectors
and outputs the predicted class?

Gustave Cortal 11 / 46



Probabilistic classifier

We want a probabilistic classifier:

How to determine P(y = 1|x ;w) and P(y = 0|x ;w) such that:

P(y = 1|x ;w) ∈ [0, 1]
P(y = 0|x ;w) ∈ [0, 1]

P(y = 1|x ;w) + P(y = 0|x ;w) = 1
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Probabilistic classifier

Let’s start with a score z :

z = w · x + b

w , x and b are real values vectors, therefore z is a real value

As we want a probability distribution over all possible classes, we need to
turn the score into a probability
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Sigmoid function

The sigmoid function takes a real value as input and outputs a value
between 0 and 1
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Making probabilities

P(y = 1) = σ(w · x + b)

=
1

1 + exp(−(w · x + b))

P(y = 0) = 1 − σ(w · x + b)

= 1 − 1
1 + exp(−(w · x + b))

=
exp(−(w · x + b))

1 + exp(−(w · x + b))
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Decision boundary

ŷ =

{
1 if P(y = 1|x) > 0.5
0 otherwise

The decision boundary gives the final classification
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Example
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Example (1)
Is this review: This was an excellent movie. Excellent plot and amazing
story - loved it!, positive or negative?

Let’s have a Bag-of-Words representation of the review:

x = [excellent, terrible, boring , amazing , loved ]

x = [2, 0, 0, 1, 1]

After training, we might get the following weights:

w = [0.8,−0.9,−0.7, 0.6, 0.7]
b = −0.1
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Example (1)
We compute the score z :

z = w · x + b

= 2(0.8) + 0(−0.9) + 0(−0.7) + 1(0.6) + 1(0.7)− 0.1
= 1.6 + 0 + 0 + 0.6 + 0.7 − 0.1
= 2.8

We apply the sigmoid function σ:

P(positive) = σ(z)

=
1

1 + e−2.8

= 0.94

Since P(positive) = 0.94 > 0.5, the review is positive
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Example (2)

Is this review: This movie was terrible. So boring and a waste of time!,
positive or negative?

Let’s have a Bag-of-Words representation of the review:

x = [excellent, terrible, boring , amazing , loved ]

x = [0, 1, 1, 0, 0]

After training, we might get the following weights:

w = [0.8,−0.9,−0.7, 0.6, 0.7]
b = −0.1
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Example (2)

We compute the score z :

z = w · x + b

= 0(0.8) + 1(−0.9) + 1(−0.7) + 0(0.6) + 0(0.7)− 0.1
= 0 − 0.9 − 0.7 + 0 + 0 − 0.1
= −1.7

We apply the sigmoid function σ:

P(positive) = σ(z)

=
1

1 + e1.7

= 0.15

Since P(positive) = 0.15 < 0.5, the review is negative
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Objective function: cross-entropy loss
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Loss function and optimization algorithm

To train our logistic regression model, we need to:

▶ Measure how good our predictions ŷ are compared to the true y using
a loss function (sometimes called a cost function)

▶ Find the optimal weights w and bias b to minimize the loss using an
optimization algorithm (eg, gradient descent)
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Deriving cross-entropy loss

There are two discrete outcomes (0 or 1)

When y = 1, we want ŷ = 1
When y = 0, we want 1 − ŷ = 1

Our goal is to maximize ŷ y (1 − ŷ)(1−y)
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Deriving cross-entropy loss

Apply log to avoid numerical instabilities
Apply negative to turn the maximization problem into a minimization one

ŷ y (1 − ŷ)(1−y)

y log ŷ + (1 − y) log(1 − ŷ)

−y log ŷ − (1 − y) log(1 − ŷ)
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Cross-entropy loss

For a single training example (x , y):

L(y , ŷ) = −y log(ŷ)− (1 − y) log(1 − ŷ)

where:

▶ y is the true label (0 or 1)
▶ ŷ = σ(w · x + b) is our prediction
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Cross-entropy loss

When y = 1:
L(y , ŷ) = − log(ŷ)

When y = 0:
L(y , ŷ) = − log(1 − ŷ)

The loss increases as our prediction ŷ gets further from the true label y
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Total loss

For all m training examples:

L(y , ŷ) = − 1
m

m∑
i=1

[y i log(ŷ i ) + (1 − y i ) log(1 − ŷ i )]

Our goal is to minimize this loss using an optimization algorithm:

w∗, b∗ = argmin
w ,b

L(y , ŷ)
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Properties of cross-entropy loss

▶ Always non-negative
▶ Equals 0 only when predictions exactly match true labels
▶ For logistic regression, the loss is convex (garanteed to find the global

minimum)
▶ For neural networks, the loss is non-convex (not garanteed to find the

global minimum)
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Optimization algorithm: gradient descent
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What are gradients?

A gradient is a vector of partial derivatives that points in the direction of
steepest increase

For a function L(x1, x2):

∇L =

 ∂L
∂x1

∂L
∂x2


∂L
∂x1

indicates how much a small change in x1 influence the loss L

The negative gradient −∇L points in the direction of steepest decrease

Gustave Cortal 31 / 46



Minimizing the loss

To find the optimal weights and bias:

▶ Compute the gradients ∇θL

▶ Use gradient descent to update parameters:

θ = θ − α∇θL

▶ Repeat until convergence

where θ = (w , b) and α is the learning rate

The learning rate is a hyperparameter

A small learning rate leads to a slow convergence
A high learning rate leads to divergent behaviors
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Gradient calculations
Remember:

L = −y log(ŷ)− (1 − y) log(1 − ŷ)

ŷ = σ(z) =
1

1 + e−z

z = w · x + b

Using the chain rule:

∂L

∂wj
=

∂L

∂ŷ
· ∂ŷ
∂z

· ∂z

∂wj

= (
−y

ŷ
+

1 − y

1 − ŷ
) · ŷ(1 − ŷ) · xj

= (ŷ − y)xj
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Types of gradient descent

▶ Batch gradient descent: uses all training examples for each update,
more stable but slower

▶ Stochastic gradient descent: uses one random example for each
update, faster but more noisy

▶ Mini-batch gradient descent: uses a small random batch of examples,
best of both worlds
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Regularization
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Why regularization?

▶ Models with many features can overfit the training data
▶ Overfitting: model performs well on training data but poorly on new

data
▶ Signs of overfitting: large weights values, complex decision

boundaries, perfect training accuracy but poor test accuracy
▶ Solution: penalizing large weights using a regularization term in the

loss function

Gustave Cortal 36 / 46



Types of regularization

Two common types, lasso (L1) and ridge (L2) regressions:

Regularization hyperparameter λ controls the strength of regularization

LL2 = Loriginal + λ

n∑
j=1

w2
j

L2 regularization drives weights to be small but non-zero

LL1 = Loriginal + λ

n∑
j=1

|wj |

L1 regularization can drive weights to zero, leading to sparse solutions
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To be continued...
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Logistic regression as a neural unit

y = σ(w · x + b) =
1

1 + exp(−(w · x + b))
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Binary logistic regression
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Multinomial logistic regression
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Softmax function

The softmax function generalizes the sigmoid to multiple classes:

softmax(zi ) =
ezi∑K
j=1 e

zj

For K classes: z = [z1, z2, ..., zK ] becomes probabilities [p1, p2, ..., pK ]
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Multinomial logistic regression
For K classes:

▶ Each class k has its own weight vector wk

▶ Compute K scores: zk = wk · x + bk
▶ Apply softmax to get probabilities:

P(Y = k |x) = ewk·x+bk∑K
j=1 e

wj·x+bj

Prediction:
ŷ = argmax

k
P(Y = k |x)

Cross-entropy loss:

L = −
K∑

k=1

yk log(pk)

where yk is 1 if k is the true class, 0 otherwise
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Relationship between cross-entropy and KL divergence
Cross-entropy and Kullback–Leibler (KL) divergence are closely related
measures used to compare two probability distributions—usually a
predicted distribution p and a true distribution q

Cross-entropy H(q, p):

H(q, p) = −
∑
x

q(x) log p(x)

KL divergence DKL(q∥p):

DKL(q∥p) =
∑
x

q(x) log
q(x)

p(x)

H(q, p) = H(q) + DKL(q∥p)

H(q) = −
∑
x

q(x) log q(x)
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Relationship between cross-entropy and KL divergence

Cross-entropy can be decomposed into:

H(q): the entropy of the true distribution (intrinsic uncertainty)

DKL(q∥p): how much extra uncertainty is introduced by using p instead
of q

Minimizing cross-entropy =⇒ Minimizing DKL(q∥p), since H(q) is
constant

When p = q, DKL(q∥p) = 0, and H(q, p) = H(q)
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Exercices

▶ Continue implementing naive Bayes classifier from scratch
▶ Project: discuss possible datasets (final day), write datasheet, perform

exploratory data analysis, apply n-grams, naive Bayes and logistic
regression on the project dataset
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