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Supervised machine learning

Input

a document d

a fixed set of classes C = ¢1, ¢, ..., ¢y

a training set of m hand-labeled documents (di, c1), ..., (dm, ¢m)

Output

a learned classifier v : d — ¢

Some methods

Naive Bayes

Logistic Regression
Support-Vector Machines
k-Nearest Neighbors

Gustave Cortal 4/46



Bayes' rule applied to documents

For a document d and a class c:
P(c|d) =

P(d|c) is the likelihood

P(c) is the prior

We drop the denominator P(d)

The classifier selects the most likely class:

max = P(cld
Cmax = arg max (c|d)
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Logistic regression
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Generative and discriminative classifiers

Generative classifier
The classifier learns how the data was generated
For a document d and a class c:

P(d[c)P(c)
P(d)
We learn the likelihood and the prior: P(d|c) and P(c)

P(cld) =

¢ = argmax P(d|c)P(c)

Discriminative classifier
The classifier directly learns the decision boundary between classes
We learn the posterior P(c|d) directly

¢ = P(c|d
¢ = argmax (c|d)

Gustave Cortal 7/46



Generative classifier

Suppose we want to predict whether an image corresponds to a cat or a
dog

A generative cat model learns the cat characteristics
A generative dog model learns the dog characteristics
Characteristics can be shapes, colors, eyes, etc.

Given a new image, we run both models and see which one assigns a
greater probability of generating this image
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Discriminative classifier

Suppose we want to predict whether an image corresponds to a cat or a
dog

A discriminative model learns to distinguish dogs from cats directly
For example, a dog has no mustache compared to a cat

é

Given a new image, we use the decision boundary of the discriminative
model to determine whether it is a cat or a dog
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Components of a machine learning classifier

Given m input and output pairs (x', y'):

> A feature representation of the input (eg, Bag-of-Words). For each
input observation x', a vector of features [x, x2, ..., x,]. Feature j for
input x' is x;

> A classification function that computes y, the estimated class (eg,
logistic regression)

> An objective function for learning (eg, cross-entropy loss)

» An optimization algorithm for minimizing or maximizing the
objective function (eg, stochastic gradient descent)

Gustave Cortal 10/ 46



Weights

Input: x = [x1,x2, ..., Xp]
Weights: w = [wy, wa, ..., w,]
Output: a predicted class y € {0,1}

How to learn a classification function that takes input and weight vectors
and outputs the predicted class?
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Probabilistic classifier

We want a probabilistic classifier:

How to determine P(y = 1|x; w) and P(y = 0|x; w) such that:

P(y = 1|x; w) € ]0,1]
P(y =0|x; w) € [0,1]
P(y =1|x;w)+ P(y = 0|x;w) = 1
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Probabilistic classifier

Let's start with a score z:
Zz=w-Xx+b
w, x and b are real values vectors, therefore z is a real value

As we want a probability distribution over all possible classes, we need to
turn the score into a probability
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Sigmoid function

The sigmoid function takes a real value as input and outputs a value
between 0 and 1
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Making probabilities

Ply=1)=o(w-x+b)

1
T 1+exp(—(w-x + b))

Ply=0)=1—-0(w-x+b)

1

1+ exp(—(w-x+ b))

 exp(—(wx+ b))
~ 1+exp(—(w-x+ b))
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Decision boundary

. J1 ifP(y=1|x) >05
= 0 otherwise

The decision boundary gives the final classification
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Example
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Example (1)
Is this review: This was an excellent movie. Excellent plot and amazing
story - loved it!, positive or negative?

Let's have a Bag-of-Words representation of the review:

x = [excellent, terrible, boring, amazing, loved)]
x =[2,0,0,1,1]

After training, we might get the following weights:

w = [0.8,-0.9,—0.7,0.6,0.7]
b= 0.1
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Example (1)

We compute the score z:

Z=w-x+b

= 2(0.8) + 0(—0.9) 4 0(—0.7) + 1(0.6) + 1(0.7) — 0.1

=16+0+0+4+06+4+0.7-0.1
=238

We apply the sigmoid function o:

P(positive) = o(2)
_ 1
= Tye7e
=0.94

Since P(positive) = 0.94 > 0.5, the review is positive
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Example (2)

Is this review: This movie was terrible. So boring and a waste of timel,
positive or negative?

Let's have a Bag-of-Words representation of the review:

x = [excellent, terrible, boring, amazing, loved)|
x=1[0,1,1,0,0]

After training, we might get the following weights:

w = [0.8,-0.9,-0.7,0.6,0.7]
b=—-0.1
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Example (2)
We compute the score z:

z=w-x+b
= 0(0.8) + 1(—0.9) + 1(—0.7) + 0(0.6) + 0(0.7) — 0.1
=0-09-07+040-0.1
=-17

We apply the sigmoid function o:

P(positive) = o(z)
_ 1
= Tyar
=0.15

Since P(positive) = 0.15 < 0.5, the review is negative
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Objective function: cross-entropy loss
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Loss function and optimization algorithm

To train our logistic regression model, we need to:

» Measure how good our predictions § are compared to the true y using
a loss function (sometimes called a cost function)

» Find the optimal weights w and bias b to minimize the loss using an
optimization algorithm (eg, gradient descent)
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Deriving cross-entropy loss

There are two discrete outcomes (0 or 1)

When y =1, wewant y =1
When y =0, wewant1 —y =1

Our goal is to maximize y¥(1 — y)=Y)
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Deriving cross-entropy loss

Apply log to avoid numerical instabilities
Apply negative to turn the maximization problem into a minimization one
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Cross-entropy loss

For a single training example (x, y):

Lly,y) = —ylog(y) — (1 — y)log(1 - )
where:

> y is the true label (0 or 1)
» y =o(w-x+ b) is our prediction
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Cross-entropy loss

When y = 1:
When y = 0:
L(y,y) = —log(1-9)

The loss increases as our prediction y gets further from the true label y
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Total loss

For all m training examples:

Ly.9) = ==Y Iy log(s) + (1 - ) log(1 - 9]

Our goal is to minimize this loss using an optimization algorithm:

w*, b* = argmin L(y,7)
w,b
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Properties of cross-entropy loss

» Always non-negative

» Equals 0 only when predictions exactly match true labels

» For logistic regression, the loss is convex (garanteed to find the global
minimum)

» For neural networks, the loss is non-convex (not garanteed to find the
global minimum)

Not convex

Convex
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Optimization algorithm: gradient descent
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What are gradients?

A gradient is a vector of partial derivatives that points in the direction of
steepest increase

For a function L(x, x2):
oL
Ox1

oL

Ox2

VL =

g—XLl indicates how much a small change in x; influence the loss L

The negative gradient —V L points in the direction of steepest decrease
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Minimizing the loss

To find the optimal weights and bias:

» Compute the gradients VgL
» Use gradient descent to update parameters:

0=0—aVyl

» Repeat until convergence

where 6 = (w, b) and « is the learning rate

The learning rate is a hyperparameter

A small learning rate leads to a slow convergence
A high learning rate leads to divergent behaviors
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Gradient calculations
Remember:
L= —ylog(y) — (1 —y)log(l—9)
1
T 14e2
z=w-x+b

A

y=o0(2)

Using the chain rule:

aL AL 9y Oz

ow, 9y 0z ow
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Types of gradient descent

» Batch gradient descent: uses all training examples for each update,
more stable but slower

» Stochastic gradient descent: uses one random example for each
update, faster but more noisy

» Mini-batch gradient descent: uses a small random batch of examples,
best of both worlds
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Regularization
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Why regularization?

» Models with many features can overfit the training data

» Overfitting: model performs well on training data but poorly on new
data

» Signs of overfitting: large weights values, complex decision
boundaries, perfect training accuracy but poor test accuracy

» Solution: penalizing large weights using a regularization term in the
loss function
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Types of regularization

Two common types, lasso (L1) and ridge (L2) regressions:

Regularization hyperparameter A controls the strength of regularization

n
Li2 = Loriginal + A > _ W}

=t

L2 regularization drives weights to be small but non-zero

n
Lip = Loriginal +A Z IVVJ‘

j=1

L1 regularization can drive weights to zero, leading to sparse solutions
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To be continued...
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Logistic regression as a neural unit

Wy a
% oy
W3
X 3 b

1

y:J(WX+b): 1+exp(—(WX+b))
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Binary logistic regression

Output
sigmoid

Weight vector

Input feature
vector

Input words
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Binary Logistic Regression

p(+) = 1-p(-)
y
[scalar]
w
[1x1]
X X X X X
[f x1] 1 2 3 f
wordcount positive lexicon count of
=3 words = 1 “no” =0
dessert was great
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Multinomial logistic regression

Multinomial Logistic Regression
p(+) p(-)  p(neut)
t 4 t

Output y

fimax These f red weights
sottma [Kx1] are arow of W
<+ corresponding
Weight W to weight vector wg,
matrix [Kxf] (= weights for class 3)
Input feature [If(Xl] X Xy X3 Xp
vector wordcount positive lexicon —count of
=3 words = 1 “no” =0
Input words dessert was great
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Softmax function

The softmax function generalizes the sigmoid to multiple classes:

e%

K

Softmax(z,') = F
j=1€7

For K classes: z = [z, z, ..., zx]| becomes probabilities [p1, p2, .., pk]
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Multinomial logistic regression

For K classes:

» Each class k has its own weight vector wy
» Compute K scores: zx = wy - x + by
» Apply softmax to get probabilities:

eWk X+ by

P(Y = k|x) =

Prediction:
y=arg max P(Y = k|x)
Cross-entropy loss:
K
L==>"ylog(pi)
k=1
where yy is 1 if k is the true class, 0 otherwise
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Relationship between cross-entropy and KL divergence

Cross-entropy and Kullback—Leibler (KL) divergence are closely related
measures used to compare two probability distributions—usually a
predicted distribution p and a true distribution g

Cross-entropy H(q, p):

H(a,p) = = _ q(x) log p(x)

X

KL divergence Dk1,(q||p):

Dir(allp) = 3 q(x) log ZEX;

H(g, p) = H(q) + Dx1(q|lp)
H(q) =—>_ q(x) log q(x)

X
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Relationship between cross-entropy and KL divergence

Cross-entropy can be decomposed into:
H(q): the entropy of the true distribution (intrinsic uncertainty)

Dxk1.(q||p): how much extra uncertainty is introduced by using p instead
of g

Minimizing cross-entropy = Minimizing Dk1.(q||p), since H(q) is

constant
When p = g, Dki(qllp) = 0, and H(q,p) = H(q)
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Exercices

» Continue implementing naive Bayes classifier from scratch

» Project: discuss possible datasets (final day), write datasheet, perform
exploratory data analysis, apply n-grams, naive Bayes and logistic
regression on the project dataset
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