Logistic regression, cross-entropy loss, gradient descent

Gustave Cortal

Gustave Cortal 1/46

Summary

Last course's reminder

Logistic regression

Example

Objective function: cross-entropy loss

Optimization algorithm: gradient descent

Regularization

To be continued...

Gustave Cortal 2 / 46

Last course's reminder

Gustave Cortal 3 / 46

Supervised machine learning

Input

- a document d
- a fixed set of classes $C = c_1, c_2, ..., c_J$
- a training set of m hand-labeled documents $(d_1, c_1), ..., (d_m, c_m)$

Output

a learned classifier $\gamma:d\to c$

Some methods

Naïve Bayes Logistic Regression Support-Vector Machines k-Nearest Neighbors

Gustave Cortal 4 / 46

Bayes' rule applied to documents

For a document d and a class c:

$$P(c|d) = \frac{P(d|c)P(c)}{P(d)}$$

P(d|c) is the *likelihood* P(c) is the *prior* We drop the denominator P(d)

The classifier selects the most likely class:

$$c_{\mathsf{max}} = \arg\max_{c \in \mathcal{C}} P(c|d)$$

Gustave Cortal 5 / 46

Logistic regression

Gustave Cortal 6 / 46

Generative and discriminative classifiers

Generative classifier

The classifier learns **how the data was generated** For a document *d* and a class *c*:

$$P(c|d) = \frac{P(d|c)P(c)}{P(d)}$$

We learn the likelihood and the prior: P(d|c) and P(c)

$$\hat{c} = \arg\max_{c \in C} P(d|c)P(c)$$

Discriminative classifier

The classifier directly learns the decision boundary between classes We learn the posterior P(c|d) directly

$$\hat{c} = \arg\max_{c \in C} P(c|d)$$

Gustave Cortal 7 / 46

Generative classifier

Suppose we want to predict whether an image corresponds to a cat or a dog

A generative cat model learns the cat characteristics A generative dog model learns the dog characteristics Characteristics can be shapes, colors, eyes, etc.

Given a new image, we run both models and see which one assigns a greater probability of generating this image

Gustave Cortal 8 / 4

Discriminative classifier

Suppose we want to predict whether an image corresponds to a cat or a dog

A discriminative model learns to distinguish dogs from cats **directly** For example, a dog has no mustache compared to a cat

Given a new image, we use the *decision boundary* of the discriminative model to determine whether it is a cat or a dog

Gustave Cortal 9 / 46

Components of a machine learning classifier

Given m input and output pairs (x^i, y^i) :

- ▶ A feature representation of the input (eg, Bag-of-Words). For each input observation x^i , a vector of features $[x_1, x_2, \ldots, x_n]$. Feature j for input x^i is x_i^i
- A classification function that computes \hat{y} , the estimated class (eg, logistic regression)
- ► An **objective function** for learning (eg, *cross-entropy loss*)
- An optimization algorithm for minimizing or maximizing the objective function (eg, stochastic gradient descent)

Gustave Cortal 10 / 46

Weights

```
Input: x = [x_1, x_2, \dots, x_n]
Weights: w = [w_1, w_2, \dots, w_n]
Output: a predicted class \hat{y} \in \{0, 1\}
```

How to learn a classification function that takes input and weight vectors and outputs the predicted class?

Gustave Cortal 11 / 46

Probabilistic classifier

We want a probabilistic classifier:

How to determine P(y = 1|x; w) and P(y = 0|x; w) such that:

$$P(y = 1|x; w) \in [0, 1]$$

 $P(y = 0|x; w) \in [0, 1]$
 $P(y = 1|x; w) + P(y = 0|x; w) = 1$

Gustave Cortal 12 / 46

Probabilistic classifier

Let's start with a score z:

$$z = w \cdot x + b$$

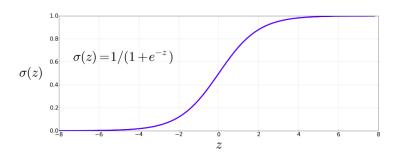
w, x and b are real values vectors, therefore z is a real value

As we want a probability distribution over all possible classes, we need to turn the score into a probability

Gustave Cortal

Sigmoid function

The $sigmoid\ function\$ takes a real value as input and outputs a value between 0 and 1



Gustave Cortal 14 / 46

Making probabilities

$$P(y = 1) = \sigma(w \cdot x + b)$$

$$= \frac{1}{1 + \exp(-(w \cdot x + b))}$$

$$P(y = 0) = 1 - \sigma(w \cdot x + b)$$

$$= 1 - \frac{1}{1 + \exp(-(w \cdot x + b))}$$

$$= \frac{\exp(-(w \cdot x + b))}{1 + \exp(-(w \cdot x + b))}$$

Gustave Cortal 15 / 46

Decision boundary

$$\hat{y} = \begin{cases} 1 & \text{if } P(y=1|x) > 0.5 \\ 0 & \text{otherwise} \end{cases}$$

The decision boundary gives the final classification

Gustave Cortal 16 / 46

Example

Gustave Cortal 17/46

Example (1)

Is this review: This was an excellent movie. Excellent plot and amazing story - loved it!, positive or negative?

Let's have a Bag-of-Words representation of the review:

$$x = [excellent, terrible, boring, amazing, loved]$$

 $x = [2, 0, 0, 1, 1]$

After training, we might get the following weights:

$$w = [0.8, -0.9, -0.7, 0.6, 0.7]$$

 $b = -0.1$

Gustave Cortal 18 / 46

Example (1)

We compute the score z:

$$z = w \cdot x + b$$

$$= 2(0.8) + 0(-0.9) + 0(-0.7) + 1(0.6) + 1(0.7) - 0.1$$

$$= 1.6 + 0 + 0 + 0.6 + 0.7 - 0.1$$

$$= 2.8$$

We apply the sigmoid function σ :

$$P(\text{positive}) = \sigma(z)$$

$$= \frac{1}{1 + e^{-2.8}}$$

$$= 0.94$$

Since P(positive) = 0.94 > 0.5, the review is positive

Gustave Cortal 19 / 46

Example (2)

Is this review: This movie was terrible. So boring and a waste of time!, positive or negative?

Let's have a Bag-of-Words representation of the review:

$$x = [excellent, terrible, boring, amazing, loved]$$

 $x = [0, 1, 1, 0, 0]$

After training, we might get the following weights:

$$w = [0.8, -0.9, -0.7, 0.6, 0.7]$$

 $b = -0.1$

Gustave Cortal 20 / 46

Example (2)

We compute the score z:

$$z = w \cdot x + b$$

$$= 0(0.8) + 1(-0.9) + 1(-0.7) + 0(0.6) + 0(0.7) - 0.1$$

$$= 0 - 0.9 - 0.7 + 0 + 0 - 0.1$$

$$= -1.7$$

We apply the sigmoid function σ :

$$P(\text{positive}) = \sigma(z)$$

$$= \frac{1}{1 + e^{1.7}}$$

$$= 0.15$$

Since P(positive) = 0.15 < 0.5, the review is negative

Gustave Cortal 21 / 46

Objective function: cross-entropy loss

Gustave Cortal 22 / 46

Loss function and optimization algorithm

To train our logistic regression model, we need to:

- Measure how good our predictions \hat{y} are compared to the true y using a loss function (sometimes called a cost function)
- ► Find the optimal weights w and bias b to minimize the loss using an optimization algorithm (eg, gradient descent)

Gustave Cortal 23 / 46

Deriving cross-entropy loss

There are two discrete outcomes (0 or 1)

When y = 1, we want $\hat{y} = 1$ When y = 0, we want $1 - \hat{y} = 1$

Our goal is to maximize $\hat{y}^y(1-\hat{y})^{(1-y)}$

Gustave Cortal 24 / 46

Deriving cross-entropy loss

Apply log to avoid numerical instabilities

Apply negative to turn the maximization problem into a minimization one

$$\hat{y}^{y}(1-\hat{y})^{(1-y)}$$

$$y \log \hat{y} + (1-y) \log(1-\hat{y})$$

$$-y \log \hat{y} - (1-y) \log(1-\hat{y})$$

Gustave Cortal 25 / 46

Cross-entropy loss

For a single training example (x, y):

$$L(y, \hat{y}) = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y})$$

where:

- y is the true label (0 or 1)
- $\hat{y} = \sigma(w \cdot x + b)$ is our prediction

Gustave Cortal 26 / 46

Cross-entropy loss

When
$$y = 1$$
:

$$L(y, \hat{y}) = -\log(\hat{y})$$

When y = 0:

$$L(y, \hat{y}) = -\log(1 - \hat{y})$$

The loss increases as our prediction \hat{y} gets further from the true label y

Gustave Cortal 27 / 46

Total loss

For all *m* training examples:

$$L(y, \hat{y}) = -\frac{1}{m} \sum_{i=1}^{m} [y^{i} \log(\hat{y}^{i}) + (1 - y^{i}) \log(1 - \hat{y}^{i})]$$

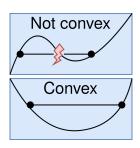
Our goal is to minimize this loss using an optimization algorithm:

$$w^*, b^* = \underset{w,b}{\operatorname{arg \, min}} L(y, \hat{y})$$

Gustave Cortal 28 / 46

Properties of cross-entropy loss

- Always non-negative
- ▶ Equals 0 only when predictions exactly match true labels
- ► For logistic regression, the loss is convex (garanteed to find the global minimum)
- ► For neural networks, the loss is non-convex (**not** garanteed to find the global minimum)



Gustave Cortal 29 / 46

Optimization algorithm: gradient descent

Gustave Cortal 30 / 40

What are gradients?

A gradient is a vector of partial derivatives that points in the direction of steepest increase

For a function $L(x_1, x_2)$:

$$\nabla L = \begin{bmatrix} \frac{\partial L}{\partial x_1} \\ \frac{\partial L}{\partial x_2} \end{bmatrix}$$

 $rac{\partial \it{L}}{\partial x_1}$ indicates how much a small change in \it{x}_1 influence the loss \it{L}

The negative gradient $-\nabla L$ points in the direction of steepest decrease

Gustave Cortal 31/46

Minimizing the loss

To find the optimal weights and bias:

- ightharpoonup Compute the gradients $\nabla_{\theta} L$
- Use gradient descent to update parameters:

$$\theta = \theta - \alpha \nabla_{\theta} L$$

Repeat until convergence

where $\theta = (w, b)$ and α is the *learning rate*

The learning rate is a hyperparameter

A small learning rate leads to a slow convergence A high learning rate leads to divergent behaviors

Gustave Cortal 32 / 46

Gradient calculations

Remember:

$$L = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y})$$
$$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$$
$$z = w \cdot x + b$$

Using the chain rule:

$$\begin{aligned} \frac{\partial L}{\partial w_j} &= \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial z} \cdot \frac{\partial z}{\partial w_j} \\ &= \left(\frac{-y}{\hat{y}} + \frac{1-y}{1-\hat{y}}\right) \cdot \hat{y}(1-\hat{y}) \cdot x_j \\ &= (\hat{y} - y)x_j \end{aligned}$$

Gustave Cortal 33 / 46

Types of gradient descent

- Batch gradient descent: uses all training examples for each update, more stable but slower
- Stochastic gradient descent: uses one random example for each update, faster but more noisy
- ► Mini-batch gradient descent: uses a small random batch of examples, best of both worlds

Gustave Cortal 34 / 46

Regularization

Gustave Cortal 35 / 46

Why regularization?

- Models with many features can overfit the training data
- Overfitting: model performs well on training data but poorly on new data
- Signs of overfitting: large weights values, complex decision boundaries, perfect training accuracy but poor test accuracy
- Solution: penalizing large weights using a regularization term in the loss function

Gustave Cortal 36 / 46

Types of regularization

Two common types, lasso (L1) and ridge (L2) regressions:

Regularization hyperparameter λ controls the strength of regularization

$$L_{L2} = L_{original} + \lambda \sum_{j=1}^{n} w_j^2$$

L2 regularization drives weights to be small but non-zero

$$L_{L1} = L_{original} + \lambda \sum_{j=1}^{n} |w_j|$$

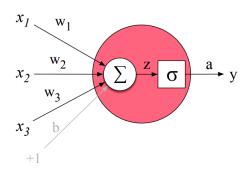
L1 regularization can drive weights to zero, leading to sparse solutions

Gustave Cortal 37 / 46

To be continued...

Gustave Cortal 38 / 46

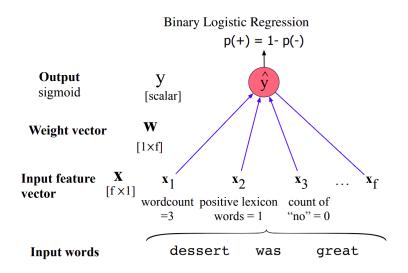
Logistic regression as a neural unit



$$y = \sigma(w \cdot x + b) = \frac{1}{1 + \exp(-(w \cdot x + b))}$$

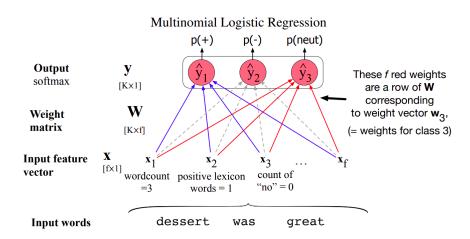
Gustave Cortal 39 / 46

Binary logistic regression



Gustave Cortal 40 / 46

Multinomial logistic regression



Gustave Cortal 41/46

Softmax function

The softmax function generalizes the sigmoid to multiple classes:

$$softmax(z_i) = \frac{e^{z_i}}{\sum_{j=1}^{K} e^{z_j}}$$

For K classes: $z = [z_1, z_2, ..., z_K]$ becomes probabilities $[p_1, p_2, ..., p_K]$

Gustave Cortal 42 / 46

Multinomial logistic regression

For K classes:

- Each class k has its own weight vector w_k
- ▶ Compute K scores: $z_k = w_k \cdot x + b_k$
- ► Apply softmax to get probabilities:

$$P(Y = k|x) = \frac{e^{\mathbf{w_k} \cdot x + b_k}}{\sum_{j=1}^{K} e^{\mathbf{w_j} \cdot x + b_j}}$$

Prediction:

$$\hat{y} = \arg\max_{k} P(Y = k|\mathbf{x})$$

Cross-entropy loss:

$$L = -\sum_{k=1}^{K} y_k \log(p_k)$$

where y_k is 1 if k is the true class, 0 otherwise

Gustave Cortal 43 / 46

Relationship between cross-entropy and KL divergence

Cross-entropy and Kullback-Leibler (KL) divergence are closely related measures used to compare two probability distributions—usually a predicted distribution p and a true distribution q

Cross-entropy H(q, p):

$$H(q,p) = -\sum_{x} q(x) \log p(x)$$

KL divergence $D_{KL}(q||p)$:

$$D_{\mathrm{KL}}(q||p) = \sum_{x} q(x) \log \frac{q(x)}{p(x)}$$

$$H(q, p) = H(q) + D_{\mathrm{KL}}(q||p)$$

$$H(q) = -\sum_{x} q(x) \log q(x)$$

Gustave Cortal 44 / 40

Relationship between cross-entropy and KL divergence

Cross-entropy can be decomposed into:

H(q): the entropy of the true distribution (intrinsic uncertainty)

 $D_{\mathrm{KL}}(q\|p)$: how much extra uncertainty is introduced by using p instead of q

Minimizing cross-entropy \implies Minimizing $D_{\mathrm{KL}}(q\|p)$, since H(q) is constant

When p=q, $D_{\mathrm{KL}}(q\|p)=0$, and H(q,p)=H(q)

Gustave Cortal 45 / 46

Exercices

- ► Continue implementing naive Bayes classifier from scratch
- ▶ Project: discuss possible datasets (final day), write datasheet, perform exploratory data analysis, apply n-grams, naive Bayes and logistic regression on the project dataset

Gustave Cortal 46 / 46