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Feedforward network for text classification

Figure: Feedforward network sentiment analysis using a pooled embedding.
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Feedforward neural networks for language modeling
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Recurrent neural networks
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Introduction

Language is a temporal phenomenon

Feedforward neural networks assumed simultaneous access: for
language modeling, they look only at a fixed-size window of words, then
slide this window over the input

Recurrent neural networks handle the temporal nature of language
without using arbitrary fixed-sized windows: the hidden layer from the
previous step provides a memory that encodes earlier processing and
informs the decisions to be made at later steps
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Feedforward vs recurrent neural networks
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Recurrent neural networks

ht = g(Uht−1 +Wxt)

yt = softmax(Vht)
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Recurrent neural networks
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RNNs for language modeling
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Sampling
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RNNs for other tasks
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Stacked RNNs
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Bidirectional RNNs
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Training with encoder-decoder networks
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Inference with encoder-decoder networks
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Final hidden state as a fixed context vector for the decoder
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Attention mechanisms
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The final hidden state acts as a bottleneck

This final hidden state must represent everything about the meaning of
the source text

However, information at the beginning of the sentence may not be
equally well represented in the context vector
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Attention mechanisms: introduction

The attention mechanism is a solution to the bottleneck problem: it
allows the decoder to get information from all the hidden states of the
encoder

The idea of attention is to create the single fixed-length vector c by
taking a weighted sum of all the encoder hidden states. The weights
focus on a particular part of the source text that is relevant to the token
the decoder is currently producing

Attention thus replaces the static context vector with one that is
dynamically derived from the encoder hidden states, different for each
token in
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Dot-product attention
The first step in computing ci is to compute how relevant each encoder
state is to the decoder state captured in hdi−1

Then, implement relevance as dot-product similarity:

score(hdi−1, h
e
j ) = hdi−1 · hej

Then, apply a softmax to create a vector of weights, αij , that tells the
proportional relevance of each encoder hidden state j to the prior hidden
decoder state, hdi−1:

αij =
exp(score(hdi−1, h

e
j ))∑

k exp(score(h
d
i−1, h

e
k))

Finally, compute a fixed-length context vector for the current decoder
state by taking a weighted average over all the encoder hidden states:

ci =
∑
j

αijh
e
j
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Encoder-decoder networks with dot-product attention
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Long Short Term Memory network
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FNN vs RNN vs LSTM units
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