
Transformers

Gustave Cortal

April 7, 2025

Gustave Cortal 1 / 51



Summary

Last course’s reminder

Transformer

Conclusion

Ressources

Gustave Cortal 2 / 51



Last course’s reminder

Gustave Cortal 3 / 51



Feedforward network for text classification

Figure: Feedforward network sentiment analysis using a pooled embedding.

Gustave Cortal 4 / 51



Feedforward neural networks for language modeling

Gustave Cortal 5 / 51



Recurrent neural networks

ht = g(Uht−1 +Wxt)

yt = softmax(Vht)

Gustave Cortal 6 / 51



RNNs for language modeling

Gustave Cortal 7 / 51



RNNs for other tasks

Gustave Cortal 8 / 51



The final hidden state acts as a bottleneck

This final hidden state must represent everything about the meaning of
the source text

However, information at the beginning of the sentence may not be
equally well represented in the context vector

Gustave Cortal 9 / 51



Encoder-decoder networks with dot-product attention

Gustave Cortal 10 / 51



Dot-product attention
The first step in computing ci is to compute how relevant each encoder
state is to the decoder state captured in hdi−1

Then, implement relevance as dot-product similarity:

score(hdi−1, h
e
j ) = hdi−1 · hej

Then, apply a softmax to create a vector of weights, αij , that tells the
proportional relevance of each encoder hidden state j to the prior hidden
decoder state, hdi−1:

αij =
exp(score(hdi−1, h

e
j ))∑

k exp(score(h
d
i−1, h

e
k))

Finally, compute a fixed-length context vector for the current decoder
state by taking a weighted average over all the encoder hidden states:

ci =
∑
j

αijh
e
j

Gustave Cortal 11 / 51



Transformer

Gustave Cortal 12 / 51



Transformers vs recurrent neural networks

The transformer offers new mechanisms (positional encodings and
self-attention) that help represent time and help focus on how words
relate to each other over long distances

Unlike RNNs, the computations at each time step are independent of
all the other steps and, therefore, can be performed in parallel

Gustave Cortal 13 / 51



Transformer block

Gustave Cortal 14 / 51



Self-attention layer

Self-attention directly extracts and uses information from arbitrarily large
contexts without passing it through intermediate recurrent connections

Gustave Cortal 15 / 51



Attention visualization

Gustave Cortal 16 / 51



Main idea of attention mechanisms

An attention-based approach is a set of comparisons to relevant items
in some context, a normalization of those scores to provide a probability
distribution, and a weighted sum using this distribution

Gustave Cortal 17 / 51



Dot-product attention
A dot product is the simplest form of comparison between elements in a
self-attention layer:

score(xi , xj) = xi · xj

Then, we normalize the scores with a softmax to create a vector of
weights, αij , that indicates the proportional relevance of each input j to
the input element i

αij = softmax(score(xi , xj)) ∀j ≤ i

=
exp(score(xi , xj))∑i

k=1 exp(score(xi , xk))
∀j ≤ i

Finally, we generate an output value yi by taking the sum of the inputs
seen so far, weighted by their respective α value.

yi =
∑
j≤i

αijxj

Gustave Cortal 18 / 51



Attention with queries, keys, and values
Transformers create a more sophisticated way of representing how tokens
contribute to the representation of inputs. Consider the three roles each
input embedding plays during the attention process:

▶ As the current focus of attention when being compared to all of the
other preceding inputs → query

▶ In its role as a preceding input being compared to the current focus of
attention → key

▶ And finally, as a value used to compute the output for the current
focus of attention

To capture these three different roles, transformers introduce weight
matrices WQ , WK , and WV . These weights project each input vector xi
into a representation of its role as a key, query, or value:

qi = WQxi ,

ki = WKxi ,

vi = WV xi

xi ∈ Rd×1, WQ ∈ Rd×d , WK ∈ Rd×d , and WV ∈ Rd×d .

Gustave Cortal 19 / 51



Attention with queries, keys and values
Given these projections, the score between a current focus of attention,
xi , and an element in the preceding context, xj , consists of a dot product
between its query vector qi and the preceding element’s key vectors kj :

score(xi , xj) = qi · kj

The output calculation for yi is now based on a weighted sum over the
value vectors v :

yi =
∑
j≤i

αijvj

Exponentiating large values can lead to numerical issues. To avoid this,
we scale the dot-product by a factor related to the size of the
embeddings:

score(xi , xj) =
qi · kj√

d

Gustave Cortal 20 / 51



Attention with queries, keys and values

Gustave Cortal 21 / 51



Parallelization

Since each output yi is computed independently, the entire process can
be parallelized by taking advantage of matrix multiplication

Input tokens are packed into a single matrix X ∈ RN×d . We multiply X
by the key, query, and value matrices:

Q = XWQ ; K = XWK ; V = XWV

Q ∈ RN×d , K ∈ RN×d , and V ∈ RN×d

We’ve reduced the self-attention step for a sequence of N tokens:

SelfAttention(Q,K ,V ) = softmax
(
QKT

√
d

)
V

Gustave Cortal 22 / 51



Masked attention matrix

QKT results in a score for each query to every key, including those that
follow the query

This is inappropriate in language modeling since guessing the next word
is pretty simple if you already know it. To fix this, the elements in the
upper-triangular portion of the matrix are set to −∞

Gustave Cortal 23 / 51



Transformer block

Gustave Cortal 24 / 51



Multihead attention

Different words in a sentence can relate to each other in many different
ways simultaneously

It is difficult for a transformer block to capture all kinds of parallel
relations among its inputs

Transformers address this issue with multihead self-attention layers, sets
of self-attention layers, called heads, that reside in parallel layers at the
same depth in a model, each with its own set of parameters

Given these distinct sets of parameters, each head can learn different
aspects of the relationships among inputs at the same level of abstraction

Gustave Cortal 25 / 51



Multihead attention

Gustave Cortal 26 / 51



Multihead attention

Each headi is provided with its own set of key, query, and value matrices:
W K

i , WQ
i , and W V

i

Instead of using the model dimension d that’s used for the input and
output from the model, the key and query embeddings have
dimensionality dk << d

MultiHeadAttention(X ) = (head1 ⊕ head2 . . .⊕ headh)WO

Qi = XWQ
i ; Ki = XW K

i ; Vi = XW V
i

headi = SelfAttention(Qi ,Ki ,Vi )

X ∈ RN×d

WQ
i ∈ Rd×dk , W K

i ∈ Rd×dk , and W V
i ∈ Rd×dv

Q ∈ RN×dk , K ∈ RN×dk , and V ∈ RN×dv

WO ∈ Rhdv×d

Gustave Cortal 27 / 51



Transformer block

Gustave Cortal 28 / 51



Residual connections

Residual connections pass information from a lower layer to a higher layer
without going through the intermediate layer

Allowing information from the activation going forward and the gradient
going backward to skip a layer improves learning and gives higher-level
layers direct access to information from lower layers

If we think of a layer as one long vector of units, the resulting function
computed in a transformer block can be expressed as:

O = LayerNorm(X + SelfAttention(X ))

H = LayerNorm(O + FFN(O))

Gustave Cortal 29 / 51



Transformer block

Gustave Cortal 30 / 51



Layer normalization

O = LayerNorm(X + SelfAttention(X ))

H = LayerNorm(O + FFN(O))

We calculate the mean, µ, and standard deviation, σ, over the elements
of the vector to be normalized. Given a hidden layer with dimensionality
d , these values are calculated as follows:

µ =
1
d

d∑
i=1

xi

σ =

√√√√ 1
d

d∑
i=1

(xi − µ)2

x̂ =
(x − µ)

σ

Gustave Cortal 31 / 51



Feedforward neural networks

FFN(O) = max(0,OW1 + b1)W2 + b2 (1)

W1 ∈ Rd×dff , W2 ∈ Rdff ×d

b1 ∈ Rdff , b2 ∈ Rd

In Attention is All you Need, d = 512 and dff = 2048

Gustave Cortal 32 / 51



Positional encoding

Train positional embeddings or use a static function that maps integer
inputs to real-values vectors

Gustave Cortal 33 / 51



Language model head

Gustave Cortal 34 / 51



Language modeling using next word prediction

Gustave Cortal 35 / 51



Conditional generation

Gustave Cortal 36 / 51



Causal vs bidirectional language model

Gustave Cortal 37 / 51



Attention matrix for bidirectional language model

Gustave Cortal 38 / 51



Masked language modeling

Gustave Cortal 39 / 51



Sequence classification

Gustave Cortal 40 / 51



Token classification

Gustave Cortal 41 / 51



Transformer architecture from Attention is All you Need

Gustave Cortal 42 / 51



Architecture, size, and hyperparameters of GPT-3 from
Language Models are Few-Shot Learners

Gustave Cortal 43 / 51



Conclusion

Gustave Cortal 44 / 51



Conclusion

Tokenization is splitting text into individual tokens

A language model is a probabilistic model that can compute the
probability of a sequence of words and compute the probability of an
upcoming word

N-grams are simple probabilistic language models based on Markov
assumption

Naive bayes classifiers are generative models based on class-specific
unigram

Embedding represents word meaning as a vector

Logistic regressions are discriminative models based on the sigmoid

Feedforward neural networks generalize better compared to n-grams
thanks to embeddings, have fixed context windows

Gustave Cortal 45 / 51



Conclusion

Recurrent neural networks handle temporal data inherently in the
architecture, have infinite context windows, hidden states have local
information

Information flow is better in gated recurrent networks due to better
context management

Attention mechanisms solve the bottleneck problem to produce
dynamically derived context vectors

Transformers use self-attention layers combined with feedforward layers
to handle more complex distant relationships between tokens, enable
parallelization due to independent computation between tokens, have
fixed context windows

Gustave Cortal 46 / 51



Ressources

Gustave Cortal 47 / 51



Ressources

Alammar, J. The Illustrated Transformer.
https://jalammar.github.io/illustrated-transformer/

Alammar, J. The Illustrated GPT-2.
https://jalammar.github.io/illustrated-gpt2/

3Blue1Brown’s videos on neural networks. https://www.youtube.com/
playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi

Gustave Cortal 48 / 51

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-gpt2/
https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi


Ressources

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.
N., Kaiser, L., & Polosukhin, I. Attention Is All You Need. arXiv.
https://doi.org/10.48550/arXiv.1706.03762

Phuong, M., & Hutter, M. Formal Algorithms for Transformers. arXiv.
https://doi.org/10.48550/arXiv.2207.09238

Amirhossein Kazemnejad’s blog. Transformer Architecture: The
Positional Encoding. https://kazemnejad.com/blog/transformer_
architecture_positional_encoding/

Weng, L. Attention? Attention!
https://lilianweng.github.io/posts/2018-06-24-attention/

Gustave Cortal 49 / 51

https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.2207.09238
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/
https://lilianweng.github.io/posts/2018-06-24-attention/


Ressources
Harvard NLP. The Annotated Transformer.
https://nlp.seas.harvard.edu/annotated-transformer/

Peter Bloem. Transformers from scratch.
https://peterbloem.nl/blog/transformers

Andrej Karpathy. Let’s build GPT: From scratch, in code, spelled out.
https://www.youtube.com/watch?v=kCc8FmEb1nY

Warner, B. Creating a Transformer From Scratch - Part One: The
Attention Mechanism. https:
//benjaminwarner.dev/2023/07/01/attention-mechanism.html

Warner, B. Creating a Transformer From Scratch - Part Two: The Rest
of the Transformer. https://benjaminwarner.dev/2023/07/28/
rest-of-the-transformer.html

Raschka, S. Understanding and coding the self-attention mechanism from
scratch. https://sebastianraschka.com/blog/2023/
self-attention-from-scratch.html

Gustave Cortal 50 / 51

https://nlp.seas.harvard.edu/annotated-transformer/
https://peterbloem.nl/blog/transformers
https://www.youtube.com/watch?v=kCc8FmEb1nY
https://benjaminwarner.dev/2023/07/01/attention-mechanism.html
https://benjaminwarner.dev/2023/07/01/attention-mechanism.html
https://benjaminwarner.dev/2023/07/28/rest-of-the-transformer.html
https://benjaminwarner.dev/2023/07/28/rest-of-the-transformer.html
https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html
https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html


Ressources

Collège de France, « Apprendre les langues aux machines »:
https://www.college-de-france.fr/fr/agenda/cours/
apprendre-les-langues-aux-machines

Dan Jurafsky and James H. Martin, Speech and Language Processing :
https:
//web.stanford.edu/~jurafsky/slp3/ed3bookfeb3_2024.pdf

3Blue1Brown, Essence of linear algebra and Neural Networks playlists :
https://www.youtube.com/@3blue1brown/playlists

AI News: we summarize top AI discords + AI reddits + AI X/Twitters,
and send you a roundup each day!
https://buttondown.email/ainews

Gustave Cortal 51 / 51

https://www.college-de-france.fr/fr/agenda/cours/apprendre-les-langues-aux-machines
https://www.college-de-france.fr/fr/agenda/cours/apprendre-les-langues-aux-machines
https://web.stanford.edu/~jurafsky/slp3/ed3bookfeb3_2024.pdf
https://web.stanford.edu/~jurafsky/slp3/ed3bookfeb3_2024.pdf
https://www.youtube.com/@3blue1brown/playlists
https://buttondown.email/ainews

	Last course's reminder
	Transformer
	Conclusion
	Ressources

