Transformers

Gustave Cortal

Gustave Cortal 1/51

Summary

Last course's reminder

Transformer

Conclusion

Ressources

Gustave Cortal 2/51

Last course's reminder

Gustave Cortal 3 / 51

Feedforward network for text classification

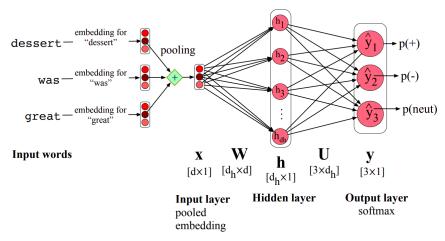
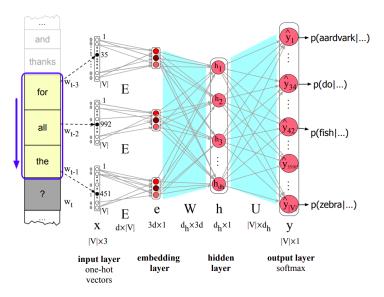


Figure: Feedforward network sentiment analysis using a pooled embedding.

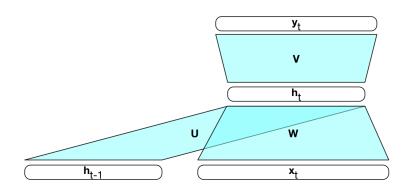
Gustave Cortal 4/51

Feedforward neural networks for language modeling



Gustave Cortal 5 / 51

Recurrent neural networks

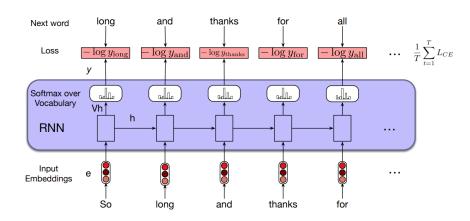


$$h_t = g(Uh_{t-1} + Wx_t)$$

 $y_t = softmax(Vh_t)$

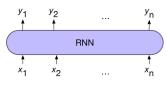
Gustave Cortal 6 / 51

RNNs for language modeling

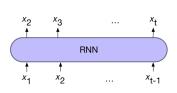


Gustave Cortal 7/51

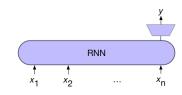
RNNs for other tasks



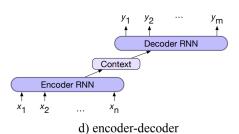
a) sequence labeling



c) language modeling

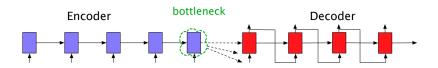


b) sequence classification



Gustave Cortal 8 / 51

The final hidden state acts as a bottleneck

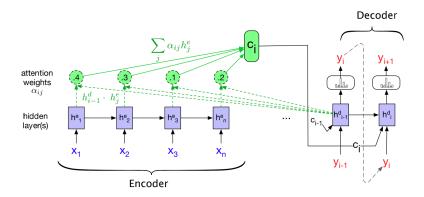


This final hidden state must represent everything about the meaning of the source text

However, information at the beginning of the sentence may not be equally well represented in the context vector

Gustave Cortal 9 / 51

Encoder-decoder networks with dot-product attention



Gustave Cortal

Dot-product attention

The first step in computing c_i is to compute how relevant each encoder state is to the decoder state captured in h_{i-1}^d

Then, implement relevance as dot-product similarity:

$$score(h_{i-1}^d, h_j^e) = h_{i-1}^d \cdot h_j^e$$

Then, apply a softmax to create a **vector of weights**, α_{ij} , that tells the proportional relevance of each encoder hidden state j to the prior hidden decoder state, h_{i-1}^d :

$$\alpha_{ij} = \frac{\exp(\mathsf{score}(h_{i-1}^d, h_j^e))}{\sum_k \exp(\mathsf{score}(h_{i-1}^d, h_k^e))}$$

Finally, compute a fixed-length context vector for the current decoder state by taking a weighted average over all the encoder hidden states:

$$c_i = \sum_j \alpha_{ij} h_j^e$$

Gustave Cortal 11/51

Transformer

Gustave Cortal

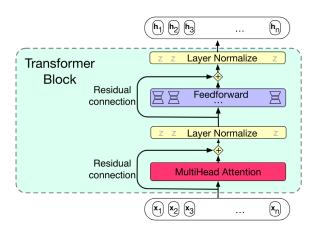
Transformers vs recurrent neural networks

The transformer offers new mechanisms (positional encodings and self-attention) that help represent time and help focus on how words relate to each other over long distances

Unlike RNNs, the computations at each time step are **independent of** all the other steps and, therefore, can be performed in parallel

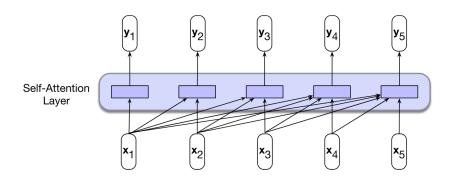
Gustave Cortal 13/51

Transformer block



Gustave Cortal

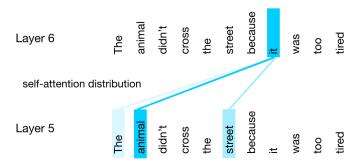
Self-attention layer



Self-attention directly extracts and uses information from arbitrarily large contexts without passing it through intermediate recurrent connections

Gustave Cortal 15 / 51

Attention visualization



Gustave Cortal 16/51

Main idea of attention mechanisms

An attention-based approach is a set of **comparisons to relevant items** in some context, a **normalization** of those scores to provide a probability distribution, and a **weighted sum** using this distribution

Gustave Cortal 17 / 51

Dot-product attention

A *dot product* is the simplest form of comparison between elements in a self-attention layer:

$$score(x_i, x_j) = x_i \cdot x_j$$

Then, we **normalize** the scores with a softmax to create a vector of weights, α_{ij} , that indicates the proportional relevance of each input j to the input element i

$$\begin{aligned} \alpha_{ij} &= \mathsf{softmax}(\mathsf{score}(x_i, x_j)) \quad \forall j \leq i \\ &= \frac{\mathsf{exp}(\mathsf{score}(x_i, x_j))}{\sum_{k=1}^{i} \mathsf{exp}(\mathsf{score}(x_i, x_k))} \quad \forall j \leq i \end{aligned}$$

Finally, we generate an output value y_i by taking the **sum** of the inputs seen so far, **weighted** by their respective α value.

$$y_i = \sum_{j \le i} \alpha_{ij} x_j$$

Gustave Cortal 18 / 51

Attention with queries, keys, and values

Transformers create a more sophisticated way of representing how tokens contribute to the representation of inputs. Consider the three roles each input embedding plays during the attention process:

- As the current focus of attention when being compared to all of the other preceding inputs \rightarrow *query*
- In its role as a preceding input being compared to the current focus of attention → key
- And finally, as a value used to compute the output for the current focus of attention

To capture these three different roles, transformers introduce weight matrices W_Q , W_K , and W_V . These weights project each input vector x_i into a representation of its role as a key, query, or value:

$$q_i = W_Q x_i,$$

 $k_i = W_K x_i,$
 $v_i = W_V x_i$

 $x_i \in \mathbb{R}^{d \times 1}$, $W_Q \in \mathbb{R}^{d \times d}$, $W_K \in \mathbb{R}^{d \times d}$, and $W_V \in \mathbb{R}^{d \times d}$.

Gustave Cortal 19 / 51

Attention with queries, keys and values

Given these projections, the score between a current focus of attention, x_i , and an element in the preceding context, x_j , consists of a dot product between its query vector q_i and the preceding element's key vectors k_j :

$$score(x_i, x_j) = q_i \cdot k_j$$

The output calculation for y_i is now based on a weighted sum over the value vectors v:

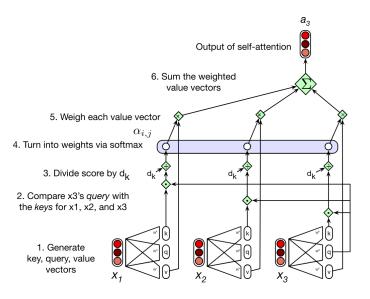
$$y_i = \sum_{j \le i} \alpha_{ij} v_j$$

Exponentiating large values can lead to numerical issues. To avoid this, we **scale** the dot-product by a factor related to the size of the embeddings:

$$score(x_i, x_j) = \frac{q_i \cdot k_j}{\sqrt{d}}$$

Gustave Cortal 20 / 51

Attention with queries, keys and values



Gustave Cortal 21 / 51

Parallelization

Since each output y_i is computed independently, the entire process can be parallelized by taking advantage of matrix multiplication

Input tokens are packed into a single matrix $X \in \mathbb{R}^{N \times d}$. We multiply X by the key, query, and value matrices:

$$Q = XW_Q$$
; $K = XW_K$; $V = XW_V$

$$Q \in \mathbb{R}^{N \times d}$$
, $K \in \mathbb{R}^{N \times d}$, and $V \in \mathbb{R}^{N \times d}$

We've reduced the self-attention step for a sequence of N tokens:

SelfAttention
$$(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d}}\right)V$$

Gustave Cortal 22 / 51

Masked attention matrix

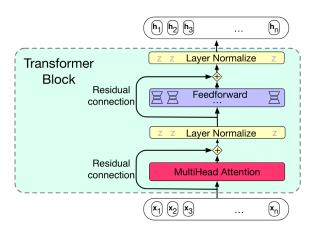
N	q1•k1	-∞	-∞	-∞	-∞
	q2•k1	q2•k2	-∞	-∞	-∞
	q3•k1	q3•k2	q3•k3	-∞	-∞
	q4•k1	q4•k2	q4•k3	q4•k4	-∞
	q5•k1	q5•k2	q5•k3	q5•k4	q5•k5
N					

 QK^T results in a score for each query to every key, including those that follow the query

This is inappropriate in language modeling since guessing the next word is pretty simple if you already know it. To fix this, the elements in the upper-triangular portion of the matrix are set to $-\infty$

Gustave Cortal 23 / 51

Transformer block



Gustave Cortal 24 / 51

Multihead attention

Different words in a sentence can relate to each other in many different ways simultaneously

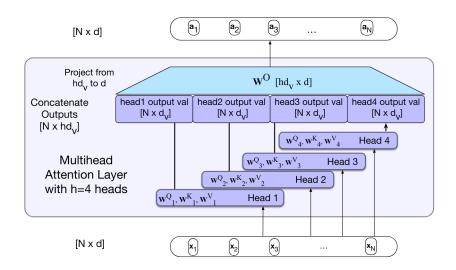
It is difficult for a transformer block to capture all kinds of parallel relations among its inputs

Transformers address this issue with *multihead self-attention layers*, sets of self-attention layers, called *heads*, that reside in parallel layers at the same depth in a model, each with its own set of parameters

Given these distinct sets of parameters, each head can learn different aspects of the relationships among inputs at the same level of abstraction

Gustave Cortal 25 / 51

Multihead attention



Gustave Cortal 26 / 51

Multihead attention

Each $head_i$ is provided with its own set of key, query, and value matrices: W_i^K , W_i^Q , and W_i^V

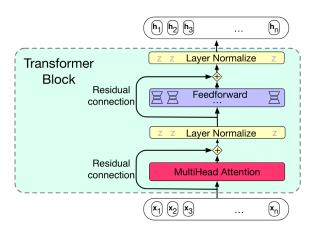
Instead of using the model dimension d that's used for the input and output from the model, the key and query embeddings have dimensionality $d_k << d$

$$\begin{aligned} \mathsf{MultiHeadAttention}(X) &= (\mathsf{head}_1 \oplus \mathsf{head}_2 \ldots \oplus \mathsf{head}_h) W^O \\ Q_i &= X W_i^Q; \quad K_i = X W_i^K; \quad V_i = X W_i^V \\ \mathsf{head}_i &= \mathsf{SelfAttention}(Q_i, K_i, V_i) \end{aligned}$$

$$X \in \mathbb{R}^{N \times d}$$
 $W_i^Q \in \mathbb{R}^{d \times d_k}$, $W_i^K \in \mathbb{R}^{d \times d_k}$, and $W_i^V \in \mathbb{R}^{d \times d_v}$
 $Q \in \mathbb{R}^{N \times d_k}$, $K \in \mathbb{R}^{N \times d_k}$, and $V \in \mathbb{R}^{N \times d_v}$
 $W^O \in \mathbb{R}^{h d_v \times d}$

Gustave Cortal 27 / 51

Transformer block



Gustave Cortal 28 / 51

Residual connections

Residual connections pass information from a lower layer to a higher layer without going through the intermediate layer

Allowing information from the activation going forward and the gradient going backward to skip a layer improves learning and gives higher-level layers direct access to information from lower layers

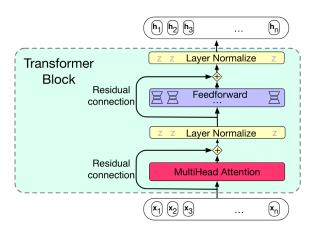
If we think of a layer as one long vector of units, the resulting function computed in a transformer block can be expressed as:

$$O = \mathsf{LayerNorm}(\mathbf{X} + \mathsf{SelfAttention}(X))$$

 $H = \mathsf{LayerNorm}(\mathbf{O} + \mathsf{FFN}(O))$

Gustave Cortal 29 / 51

Transformer block



Gustave Cortal 30 / 51

Layer normalization

$$O = LayerNorm(X + SelfAttention(X))$$

 $H = LayerNorm(O + FFN(O))$

We calculate the mean, μ , and standard deviation, σ , over the elements of the vector to be normalized. Given a hidden layer with dimensionality d, these values are calculated as follows:

$$\mu = \frac{1}{d} \sum_{i=1}^{d} x_i$$

$$\sigma = \sqrt{\frac{1}{d} \sum_{i=1}^{d} (x_i - \mu)^2}$$

$$\hat{x} = \frac{(x - \mu)}{\sigma}$$

Gustave Cortal 31 / 51

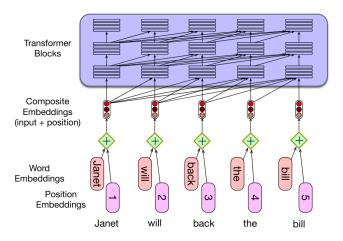
Feedforward neural networks

$$\begin{aligned} \mathsf{FFN}(O) &= \mathsf{max}(0, OW_1 + b_1)W_2 + b_2 \\ W_1 &\in \mathbb{R}^{d \times d_{\mathit{ff}}}, \quad W_2 \in \mathbb{R}^{d_{\mathit{ff}} \times d} \\ b_1 &\in \mathbb{R}^{d_{\mathit{ff}}}, \quad b_2 \in \mathbb{R}^d \end{aligned} \tag{1}$$

In Attention is All you Need, d = 512 and $d_{ff} = 2048$

Gustave Cortal 32 / 51

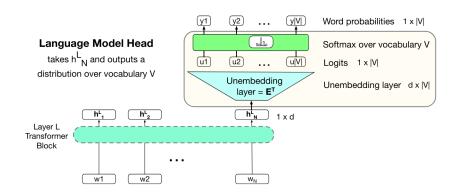
Positional encoding



Train positional embeddings or use a static function that maps integer inputs to real-values vectors

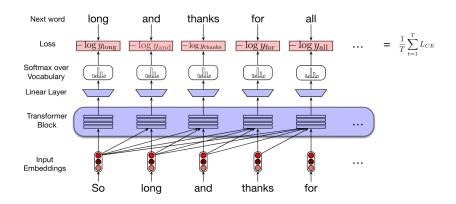
Gustave Cortal 33 / 51

Language model head



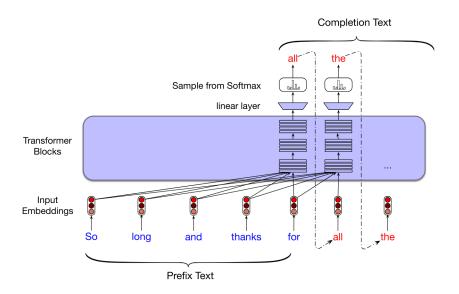
Gustave Cortal 34/51

Language modeling using next word prediction



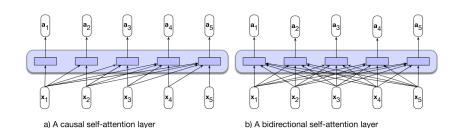
Gustave Cortal 35 / 51

Conditional generation



Gustave Cortal 36 / 51

Causal vs bidirectional language model



Gustave Cortal 37 / 51

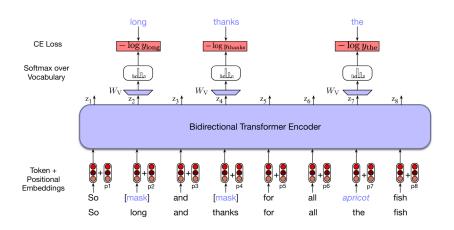
Attention matrix for bidirectional language model

q1•k1	q1•k2	q1•k3	q1•k4	q1•k5
q2•k1	q2•k2	q2•k3	q2•k4	q2•k5
q3•k1	q3•k2	q3•k3	q3•k4	q3•k5
q4•k1	q4•k2	q4•k3	q4•k4	q4•k5
q5•k1	q5•k2	q5•k3	q5•k4	q5•k5
	q2•k1 q3•k1 q4•k1	q2·k1 q2·k2 q3·k1 q3·k2 q4·k1 q4·k2	q2·k1 q2·k2 q2·k3 q3·k1 q3·k2 q3·k3 q4·k1 q4·k2 q4·k3	q2·k1 q2·k2 q2·k3 q2·k4 q3·k1 q3·k2 q3·k3 q3·k4 q4·k1 q4·k2 q4·k3 q4·k4

Ν

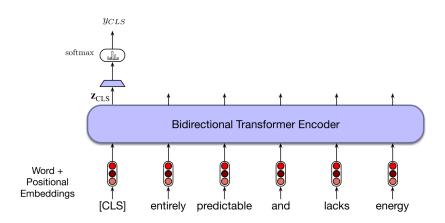
Gustave Cortal 38 / 51

Masked language modeling



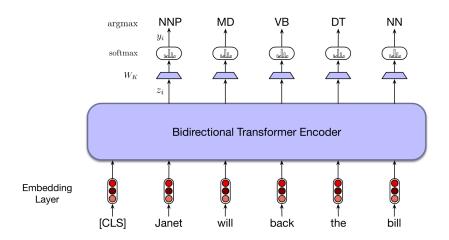
Gustave Cortal 39 / 51

Sequence classification



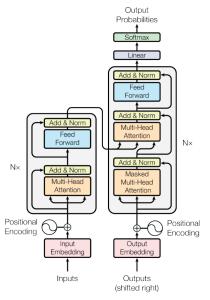
Gustave Cortal 40 / 51

Token classification



Gustave Cortal 41/51

Transformer architecture from Attention is All you Need



Gustave Cortal 42 / 51

Architecture, size, and hyperparameters of GPT-3 from Language Models are Few-Shot Learners

Model Name	n_{params}	n_{layers}	d_{model}	$n_{ m heads}$	$d_{ m head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10^{-4}
GPT-3 Medium	350M	24	1024	16	64	0.5M	3.0×10^{-4}
GPT-3 Large	760M	24	1536	16	96	0.5M	2.5×10^{-4}
GPT-3 XL	1.3B	24	2048	24	128	1M	2.0×10^{-4}
GPT-3 2.7B	2.7B	32	2560	32	80	1M	1.6×10^{-4}
GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10^{-4}
GPT-3 13B	13.0B	40	5140	40	128	2M	1.0×10^{-4}
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	0.6×10^{-4}

Gustave Cortal 43 / 51

Conclusion

Gustave Cortal 44/51

Conclusion

Tokenization is splitting text into individual tokens

A language model is a probabilistic model that can compute the probability of a sequence of words and compute the probability of an upcoming word

N-grams are simple probabilistic language models based on Markov assumption

Naive bayes classifiers are generative models based on class-specific unigram

Embedding represents word meaning as a vector

Logistic regressions are discriminative models based on the sigmoid

Feedforward neural networks generalize better compared to n-grams thanks to embeddings, have fixed context windows

Gustave Cortal 45 / 51

Conclusion

Recurrent neural networks handle temporal data inherently in the architecture, have infinite context windows, hidden states have local information

Information flow is better in gated recurrent networks due to better context management

Attention mechanisms solve the bottleneck problem to produce dynamically derived context vectors

Transformers use self-attention layers combined with feedforward layers to handle more complex distant relationships between tokens, enable parallelization due to independent computation between tokens, have fixed context windows

Gustave Cortal 46 / 51

Gustave Cortal 47 / 51

```
Alammar, J. The Illustrated Transformer.
https://jalammar.github.io/illustrated-transformer/
Alammar, J. The Illustrated GPT-2.
https://jalammar.github.io/illustrated-gpt2/
3Blue1Brown's videos on neural networks. https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
```

Gustave Cortal 48 / 51

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. *Attention Is All You Need.* arXiv. https://doi.org/10.48550/arXiv.1706.03762

Phuong, M., & Hutter, M. Formal Algorithms for Transformers. arXiv. https://doi.org/10.48550/arXiv.2207.09238

Amirhossein Kazemnejad's blog. Transformer Architecture: The Positional Encoding. https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Weng, L. Attention? Attention! https://lilianweng.github.io/posts/2018-06-24-attention/

Gustave Cortal 49 / 51

Harvard NLP. The Annotated Transformer. https://nlp.seas.harvard.edu/annotated-transformer/

Peter Bloem. *Transformers from scratch*. https://peterbloem.nl/blog/transformers

Andrej Karpathy. Let's build GPT: From scratch, in code, spelled out. https://www.youtube.com/watch?v=kCc8FmEb1nY

Warner, B. Creating a Transformer From Scratch - Part One: The Attention Mechanism. https://benjaminwarner.dev/2023/07/01/attention-mechanism.html

Warner, B. Creating a Transformer From Scratch - Part Two: The Rest of the Transformer. https://benjaminwarner.dev/2023/07/28/rest-of-the-transformer.html

Raschka, S. *Understanding and coding the self-attention mechanism from scratch*. https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html

Gustave Cortal 50 / 51

```
Collège de France, « Apprendre les langues aux machines »:
https://www.college-de-france.fr/fr/agenda/cours/
apprendre-les-langues-aux-machines
Dan Jurafsky and James H. Martin, Speech and Language Processing:
https:
//web.stanford.edu/~jurafsky/slp3/ed3bookfeb3_2024.pdf
3Blue1Brown, Essence of linear algebra and Neural Networks playlists:
https://www.youtube.com/@3blue1brown/playlists
Al News: we summarize top Al discords + Al reddits + Al X/Twitters,
and send you a roundup each day!
https://buttondown.email/ainews
```

Gustave Cortal 51/51