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Abstract. As an application of their channel theory, Barwise & Selig-
man sketched a set-theoretic model of representation systems. Their
model has the attraction of capturing many important logical proper-
ties of diagrams, but few attempts have been made to apply it to actual
diagrammatic systems. We attribute this to a lack of precision in their ex-
planation of what their model is about—what a “representation system”
is. In this paper, we propose a concept of representation system on the
basis of Barwise & Seligman’s original ideas, supplemented by Millikan’s
theory of reproduction. On this conception, a representation system is
a family of individual representational acts formed through a repetitive
reproduction process that preserves a set of syntactic and semantic con-
straints. We will show that this concept lets us identify a piece of reality
that the Barwise-Seligman model is concerned with, making the model
ready for use in the logical analysis of real-world representation systems.
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1 Introduction

Channel theory is an attempt to characterize information flows in our envi-
ronment from a logical point of view. In their book that develops this theory,
Barwise and Seligman outlined a general model of representation systems as one
of the theory’s principal applications [1, Chapter 20]. This model, which we will
call “the B&S model,” proposes a general framework in which we can investigate
logical-semantical properties of a wide range of representation systems, including
the systems of spoken language, written language, physical models, and, most
importantly for our purpose, diagrammatic representations.

The B&S model is an abstract model of representation systems, and as such
it can be used to describe classes of representation systems by characterizing ab-
stract properties common to their members. Results proven in the B&S model
concerning representation systems with particular properties will apply to all
such representation systems, and consequently, verifying that a new representa-
tion system has the desired property can be achieved simply by matching the
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system to the model. Barwise and Seligman have shown, for instance, that their
model lets us formally characterize some of the fundamental properties of dia-
grammatic systems, such as free rides, over-specificity, and auto-consistency, that
have direct implications on their cognitive efficacy [2,3]. Thus, the B&S model
has significant potential as a formal framework for logical study of diagrammatic
representations, and when fully developed, will complement the proof-theoretic
and model-theoretic framework that have been productively applied to diagram-
matic systems [4,5,6, for example].

To our knowledge, however, few attempts have been made to apply the B&S
model to actual diagrammatic systems, not even to reveal those fundamental
properties it is known to handle well. The mathematical foundation for the B&S
model is laid out explicitly by Barwise and Seligman throughout their book,
with all its main components derived from standard set theory. We believe that
the model has failed to obtain traction, not because of vagueness in the explica-
tion of the model, but rather in the lack of specificity concerning the question
of how that model is supposed to fit into reality. What aspects of reality are the
individual components of the model supposed to capture? Why are those partic-
ular mathematical structures required for that purpose? As to these conceptual
issues, Barwise and Seligman give only very general clues, leaving some impor-
tant questions unanswered. In this paper, we lay a conceptual foundation for the
avenue of logical study of diagrams that Barwise and Seligman have pointed to.

The first two thirds of this paper are devoted to these specific mathematical
questions. After presenting an overview of the structure of the B&S model (Sec-
tion 2), we will explain the aspects of the B&S model that are relatively easy to
interpret (Section 3). We then attack the parts that are less straightforward—the
part that develops a rather unusual “two-tier” semantic theory (Section 4).

As the details are filled in, however, it becomes clear that a most fundamental
question is yet to be answered. That is, what the B&S model is a model of.
Well, it is a model of representation systems, but what is a representation system
anyway? Not knowing what the model is about implies not being confident about
what the model applies to, and this presents a block to applying the model.

Drawing on the rather scarce clues provided by Barwise and Seligman, we will
reconstruct the notion of a representation system that the B&S model appar-
ently presupposes (Section 5). We propose to understand Barwise and Seligman’s
notion of representation system on the basis of Millikan’s theory of reproduction
[7,8]. According to this view, a representation system is a family of individual
representational acts formed through repetitive reproduction of new representa-
tional acts from temporally preceding representational acts. The syntactic and
semantic rules associated with a representation system are then explained as the
constraints that these individual acts inherit over the reproduction process.

2 The Structure of the B&S Model

In this section, we will present the B&S model in its bare structure. Our purpose
here is not to illustrate or explain the model, but to clearly present the mathe-
matical structure posited in the model as preparation for subsequent exposition.
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Fig. 1. The Barwise-Seligman Model of Representation Systems

Figure 1 shows the general structure of the model. It is composed of the three
classifications, three local logics on them, and two infomorphisms connecting the
three classifications. Let us define each component more exactly.

Definition 1 (Classification). A classification A = 〈tok(A), typ(A), |=A〉 con-
sists of

1. a set, tok(A), of objects to be classified, called the tokens of A,
2. a set, typ(A), of objects to classify the tokens, called the types of A, and
3. a binary relation, |=A, between tok(A) and typ(A).

Thus, the three classifications involved in the structure in Figure 1 are:

– S = 〈tok(S), typ(S), |=S〉 (depicted in left),
– C = 〈tok(C), typ(C), |=C〉 (center), and
– T = 〈tok(T), typ(T), |=T〉 (right).
We use lowercase Greek letters to refer to types of a classification, and upper-

case Greek letters to refer to sets of types. When a |=A α, we say “a is of type
α,” “a supports α,” or “α holds of a.”

Given any classification A, we often talk about a pair 〈Γ,Δ〉 of subsets of
typ(A). We call such a pair a sequent in A. A token a in tok(A) is said to
satisfy a sequent 〈Γ,Δ〉 if a supports some member of Δ provided a supports all
members of Γ . Thus, we are reading Γ conjunctively and Δ disjunctively when
we talk about the satisfaction of a sequent.

We use a (subscripted) turnstile � to denote a set of sequents, and write Γ � Δ
to mean that 〈Γ,Δ〉 belongs to �. In such a context, we adopt a common abuse
of notation for Gentzen sequents. In particular, we omit braces in denoting a
unit set (e.g., “γ � δ” instead of “{γ} � {δ}”) and use a comma to denote the
union of sets (e.g., “Γ1, Γ2 � Δ1, Δ2” instead of “Γ1 ∪ Γ2 � Δ1 ∪Δ2”).

With this preparation, local logics can be defined in the following way:

Definition 2 (Local Logic). A local logic L = 〈A,�L, NL〉 on a classification
A consists of
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1. a set �L of sequents in A satisfying the following closure conditions:
Identity : α �L α for every α ∈ typ(A),
Weakening : If Γ �L Δ, then Γ,Σ1 �L Δ,Σ2 for any Σ1, Σ2 ⊆ typ(A),
Global Cut : If there is a set Σ ⊆ typ(A) such that Σ1, Γ �L Δ,Σ2 for

each partition 〈Σ1, Σ2〉 of Σ, then Γ �L Δ.1

2. a subset NL ⊆ tok(A), called the normal tokens of L, which satisfy all the
sequents of �L.

A local logic L = 〈A,�L, NL〉 is designed to specify a system of constraints
governing the classification A. It does the job by specifying a set �L of sequents
in A that all normal tokens in tok(A) are supposed to satisfy. Just what token is
normal or abnormal is specified by NL, which carves out the members of tok(A)
that are normal as far as the local logic L is concerned.2 We call a sequent in
�L a constraint in the local logic L.

The closure conditions in clause 1 of Definition 2 are required if we are to be
able to read the sequents in �L as the constraints satisfied by any set of tokens
whatsoever. For example, if the sequent 〈Γ,Δ〉 belongs to �L, 〈Γ ∪Σ1, Δ ∪Σ2〉
necessarily belongs to �L, for if every token supporting all members of Γ supports
at least one member of Δ, then every token supporting all members of the
superset Γ ∪ Σ1 of Γ supports at least one member of the superset Δ ∪ Σ2 of
Δ. This means that the set �L of sequents must satisfy Weakening. Identity and
Global Cut are required for similar reasons. 3

The local logics involved in the structure in Figure 1 are the following:

– LS = 〈S,�LS , NLS 〉 (placed in upper left)
– LC = 〈C,�LC , NLC 〉 (upper center)
– LT = 〈T,�LT , NLT 〉 (upper right)

Definition 3 (Infomorphism). Given classifications A and B, an infomor-
phism f : A � B from A to B is a pair of functions f = 〈f ,̂ f 〉̌ such that:

1. fˆ : typ(A) → typ(B),
2. fˇ : tok(B) → tok(A), and
3. f (̌b) |=A α iff b |=B f (̂α) for each token b ∈ tok(B) and each type α ∈

typ(A).

Thus, the structure in Figure 1 involves two infomorphisms, fS : S � C and
fT : T � C. One, fS , consists of a function fSˆ from typ(S) to typ(C) and a

1 〈Σ1, Σ2〉 is a partition of Σ iff Σ1∪Σ2 = Σ and Σ1∩Σ2 = ∅. Note that this definition
allows Σ1 or Σ2 in a partition 〈Σ1, Σ2〉 to an empty set, unlike the definition of
partition adopted in certain contexts.

2 Just because you specify a subset NL of tok(A), it does not mean that you have
specified the reason why some members of tok(A) are in NL while others out. We
will come back to this issue later.

3 In fact, it has been shown that the satisfaction of these closure conditions is also
a sufficient condition for a set of sequents to be the set of the constraints on a
classification. See Section 9.5 of [1] for the more precise formulation of this idea.
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function fSˇ from tok(C) to tok(S), and the other, fT , consists of a function fTˆ
from typ(T) to typ(C) and a function fTˇ from tok(C) to tok(T). The symbol �
suggests the reversed directions of the two functions involved in an infomorphism.
Since the two infomorphisms are both connected to the classification C, Barwise
and Seligman call it the core of this structure.

Now, a representation system is just a pair of infomorphisms with a common
core, coupled with a local logic on each of the three classifications involved.

Definition 4 (Representation System). A representation system R is a
quintuple 〈fS : S � C, fT : T � C,LS ,LC ,LT 〉 where fS and fT are info-
morphisms and LS , LC , and LT are local logics on the classifications S, C, and
T, respectively.

3 Easy Part: The Source and Target Logics

Now that we have laid out a mathematical structure, we start our explication
of how it is supposed to capture something in real world. Barwise and Selig-
man intend an individual representation system R = 〈fS : S � C, fT : T �
C,LS ,LC ,LT 〉 to capture a practice of producing representations of a particular
kind. Such practices include that of producing maps, drawing diagrams, paint-
ing pictures, writing sentences, and uttering sentences. How are the individual
components of the structure R fitted to the components of such a practice? We
start with the components of R that are relatively easy to interpret.

3.1 Source

The classification S = 〈tok(S), typ(S), |=S〉 depicted in the left side of Figure
1 is called the source of the representation system, and the members of tok(S)
are called representations. Here, a representation a ∈ tok(S) is intended to be
such things as an individual diagram drawn on a particular sheet of paper, a
map printed on a particular page of a brochure, and a sentence displayed on a
particular computer display. As a token, a representation is distinguished from
its appearance. So, when one draws exactly the same arrangement of symbols
on two different occasions, the result is two different diagram tokens (represen-
tations) although they have exactly the same appearance. Similarly, two prints
of Downtown Chicago Map published by the same map publisher are different
representations—map tokens—even though they usually have exactly the same
arrangement of symbols and colors.

In contrast, typ(S) consist of syntactic properties that classify the representa-
tions in tok(S) according to what symbols appear in what arrangements. Thus,
if tok(S) consists of the individual map prints of Downtown Chicago Map, typ(S)
may contain syntactic properties such as the following:

(σ1) There is a unique street line labeled “E Ontario,” drawn left-right.

(σ2) There are unique street lines labeled “N Rush” and “N Saint Claire,”
drawn up-down.
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(σ3) A hotel symbol is at the upper-left corner of the intersection of street
lines labeled “N Rush” and “E Ontario.”

(σ4) A hotel symbol is at the lower-right corner of the intersection of street
lines labeled “N Saint Claire” and “E Ontario.”

These are types, or properties, in the sense that they can hold of many different
map tokens. In fact, they hold of all prints of Downtown Chicago Map, with the
exception of defective or degenerated copies (changed colors, unprinted symbols,
spilled coffee, etc.) These types hold of even revised maps of downtown Chicago,
as long as they have street lines with appropriate labeling, have a certain line
straight and certain lines in parallel, and have hotel symbols in certain positions.
In this way, given the sets tok(S) and typ(S), the relation |=S is determined by
which tokens support which types in reality.

3.2 Target

The classification T = 〈tok(T), typ(T), |=T〉 depicted in the right side of Figure
1 is called the target of the system. Intuitively, a member b of tok(T) is something
that is actually represented in a representational practice, so in the case of the
mapmaking practice for Downtown Chicago Map, it is a particular region in
Chicago in some period of time. If the company produces revised maps, the
same region in a subsequent time period gets represented in this mapmaking
practice, so it makes another member of tok(T).

Naturally, typ(T) consists of types, or properties, that classify these repre-
sented objects. In our case of the mapmaking practice, the set consist of types
that classify the region of Chicago in different periods of time. It may contain:

(θ1) There is a unique streets named “E Ontario,” running east-west.

(θ2) There are unique streets named “N Rush” and “N Saint Claire,” running
north-south.

(θ3) A hotel building is at the north-west corner of the crossing of streets
named “North Rush” and “East Ontario.”

(θ4) A hotel building is at the south-east corner of the crossing of streets
named “North Saint Claire” and “East Ontario.”

Note the difference from the types σ1–σ4. The types θ1–θ4 refer to possible
arrangements of streets and buildings on a region in Chicago, rather than possible
arrangements of lines and symbols on a sheet of paper.

3.3 Local Logic on the Source

The local logic LS shown in the upper left part of Figure 1 is designed to cap-
ture a system of constraints governing the source classification S. It is the triple
〈S,�LS , NLS〉, and as with every local logic, it does its job by having the sec-
ond coordinate �LS specify a set of sequents that every normal token in tok(S)



The Barwise-Seligman Model of Representation Systems 237

satisfies. In our case of mapmaking practice, an example of such a sequent can
be 〈{σ1, σ2, σ3, σ4}, {σ5}〉, where σ1–σ4 are as above and σ5 is:

(σ5) There are at least two hotel symbols on a street line labeled “E Ontario.”

This particular constraint {σ1, σ2, σ3, σ4} �LS σ5 is due to a geometrical
constraint governing lines and symbols on a plane. The set �LS may also contain
physical constraints on the coloring of symbols. In addition to these natural
constraints, the set typically contains constraints due to the syntactic stipulations
adopted in the mapmaking practice, regulating such things as what types of
building symbols can appear, how labels are placed on them, and what varieties
of colors can color regions of a map.

3.4 Local Logic on the Target

The local logic LT shown in the upper right part of Figure 1 captures a sys-
tem of constraints governing the target classification T. It is the triple 〈T,�LT

, NLT 〉, and it works just as the local logic LS works on the source classifica-
tion S. Thus, in our case of mapmaking practice, �LT contains such sequents as
〈{θ1, θ2, θ3, θ4}, {θ5}〉, where σ1–σ4 are as above and σ5 is:

(θ5) There are at least two hotel buildings on a street named “East Ontario.”

The correspondence between this constraint {θ1, θ2, θ3, θ4} �LS θ5 on the
target classification and the constraint {σ1, σ2, σ3, σ4} �LS σ5 on the source
classification is not an accident. Both constraints are based on the same topo-
logical law that regulate buildings and streets on a geographical region, as well
symbols and lines on a map.

4 Difficult Part: The Core Logic

So far, we have been concerned with the components of the B&S model that
are depicted on the left and the right side of Figure 1, and their interpreta-
tion was relatively straightforward. What about the components in the middle?
What is the center classification C supposed to model? What role do the two
infomorphisms fS = 〈fS ,̂ fS 〉̌ and fT = 〈fT ,̂ fT 〉̌ play by having C as its core?

These medial components are there to define what Barwise and Seligman
[1] call the representation relation and the indication relation supported by the
representation system.

Definition 5 (Representation and Indication). Let R = 〈fS : S � C, fT :
T � C,LS ,LC ,LT 〉 be a representation system.

1. A token a in tok(S) represents a token b in tok(T), written a �R b, if there
is a token c in tok(C) such that fS (̌c) = a and fT (̌c) = b.

2. A type α in typ(S) indicates a type β in typ(T), written α ⇒R β, if fS (̂α) �LC

fT (̂β).

In this section, we first explicate the two relations�R and ⇒R defined above,
to explain the framework of “two-tier” semantics central to the B&S model.
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4.1 Representation Relation

Intuitively, Clause 1 of Definition 5 says that a token in tok(S) represents a
token in tok(T) if they are mediated by a token c in tok(C). Barwise & Seligman
[1] characterize this c as “the particular spatial-temporal process whereby the
representation comes to represent what it does” (p. 236). When a is a map, c
is also characterized a “causal link” between a map and what it is a map of (p.
237). In such a case, the classification C is said to model the “actual practice”
of mapmaking (p. 236), so it is natural to interpret this causal link c as an
individual act that belongs to this practice of mapmaking.

Thus, in our case of mapmaking practice for downtown Chicago, a token c1
in tok(C) can be an act, conducted mainly by the map publisher, that consists
of the sub-acts of assembling relevant information about a particular region
in Chicago in a certain period of time, editing the information in the form
expressible in a map, and printing it on a particular sheet of paper. When another
map is printed, this new printing act is combined with the first two sub-acts of
c1 to make another token c2 in tok(C).

To see this situation more clearly, let e1 and e2 be the sub-acts of information
collection and information editing, respectively, and p1 and p2 be the first and
the second printing acts mentioned above. Then, the representational act c1 is
the sequence e1 ◦ e2 ◦ p1 of sub-acts, while the representational act c2 is the
sequence e1 ◦ e2 ◦ p2. Generally, every act pi of printing a new map based on the
information collected and edited in e1 and e2 gives rise to a new representational
act ci = e1 ◦ e2 ◦ pi, a new token in tok(C).

Conceived in this way, every individual mapmaking act c has a unique map
as its product, and a unique region of Chicago in a particular period of time as
the object about which information is assembled and edited. We call the former
the representing object and the latter the represented object of the act c.4

The function fSˇ can be interpreted as the assignment of a unique object to
the role of representing object in every mapmaking act in tok(C). Similarly the
function fTˇ can be interpreted as the assignment of a unique object to the role
of represented object in every such mapmaking act.

Combined, the mapmaking act c connects the particular map fS (̌c) to the
particular region fT (̌c) in the particular period of time. This is the situation
described by Clause 1 of Definition 5. It is a representational act that connects
a token in tok(S) to a token in tok(T), making the former stand in the repre-
sentation relation �R to the latter.

4 When considering the production of representations via acts, the source of the in-
formation used in the act is a token in the target classification, and the result of
the act is a token in the source classification. It may appear, then, that they have
misnamed our classifications. However the names that we have chosen derive from
the more common situation where a diagram is the source of information about a
target – utilization, rather than production, of the diagram.
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4.2 Indication Relation

The notion of role that we have just introduced to explain the functions fSˇ and
fTˇ also helps us to interpret the other functions fS (̂c) and fT (̂c), which are
depicted in the upper middle part of Figure 1. Given a type α in typ(S), we can
think of fS (̂α) as the type that classifies an act in tok(C) on the basis of the
property of the object playing the role of represented object in it. For example, if
a mapmaking act c has produced a map in which there is a unique street labeled
“E Ontario,” we can classify c as being of the following type:

(ω1) The object playing the role of representing object is such that there is a
unique street line labeled “E Ontario.”

Earlier, we considered the following type as a member of typ(S):

(σ1) There is a unique street line labeled “E Ontario.”

The types ω1 and θ1 are different, but they are closely related in the way the
following equivalence holds:

(1) A mapmaking act c is of type ω1 if and only if the object playing the role
of the representing object in c is of type σ1.

Thus, ω1 is the property that classifies a mapmaking act c according to whether
the object playing the role of representing object in c is of type σ1.

Generally, for every type σ in typ(S), there is a unique type ω in typ(C) that
classifies a member of tok(C) according to whether the object playing the role
of representing object in it is of type σi. The model uses the function fS (̂c) to
capture this functional relation from typ(S) to typ(C). In the case of the types
ω1 and σ1 above, fSˆ assigns ω1 to σ1. So, we can paraphrase (1) as:

(2) A mapmaking act c is of type fS (̂σ1) if and only if the object playing the
role of representing object in c is of type σ1.

Recalling that the object playing the role of the representing object in c is
assigned by fSˇ to c, this amounts to saying:

(3) A mapmaking act c is of type fS (̂σ1) if and only if fS (̌c) is of type σ1.

Here, we see an instance of the equivalence condition stated in the definition of
infomorphism (Definition 3). The condition lets us generalize (3) to every token c
in tok(C) and every type σ in typ(S). This way, the infomorphism f = 〈fS ,̂ fS 〉̌
captures the partial type-equivalence between an act c and the object that plays
the role of representing object in c.

A similar consideration applies to the infomorphism f = 〈fT ,̂ fT 〉̌: it captures
the partial type-equivalence between an act c and the object that plays the role
of represented object in c. For example, consider the type θ1 in typ(T) and the
type ω2 in typ(C):

(θ1) There is a unique street named “E Ontario.”
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(ω2) The object playing the role of represented object is such that there is a
unique street named “E Ontario.”

Here, fTˆ assigns ω2 to θ1, so the following equivalence holds:

(4) A mapmaking act c is of type fT (̂θ1) if and only if fT (̌c) is of type θ1.

Again, the equivalence condition in Definition 3 lets us generalize (4) to every
token in c in tok(C) and every type θ in typ(T).

Now, by the definitions of fSˆ and fT ,̂ both the image fS (̂typ(S)) and the
image fT (̂typ(T)) are subsets of typ(C). The B&S model uses this fact to define
the indication relation from types in typ(S) to types in typ(T). Take the type
σ1 in typ(S) and the type θ1 in typ(T) for example. Intuitively, if there is a
unique street line labeled “E Ontario” drawn right-left in a downtown Chicago
map, it indicates that there is a unique street named “E Ontario” running east-
west in the mapped region. That is, the type σ1 indicates the type θ1 in this
mapmaking practice. Barwise and Seligman models this indication relation as
a constraint in the local logic LC . For them, σ1 indicates θ1 just in case there
holds the constraint fS (̂σ1) �LC fT (̂θ1).

Remember that �LC lists the constraints governing the classification C of a
set of representational acts. In particular, the constraint fS (̂σ1) �LC fT (̂θ1)
states the following:

(5) A representational act in tok(C) is such that the representing object (a map,
in the present example) is of the type σ1 only if the represented object (a
city region) is of the type θ1.

This makes it clear that the constraint fS (̂σ1) �LC fT (̂θ1) is something main-
tained by the effort of people who are involved in the mapmaking acts in tok(C).
The constraint is essentially arbitrary in its origin, but once people start conform-
ing to it and believe that everybody conforms to it, it satisfies significant mutual
benefit for them to keep conforming to it. It thus becomes a “self-perpetuating”
constraint over the representational acts of a group of people. Lewis [9] has de-
veloped a general theory of how such a constraint becomes a stabilized character
of human conducts.

The condition fS (̂σ1) �LC fT (̂θ1) is the way Barwise and Seligman capture
one of such constraints. Clause 2 of Definition 5 is then a generalization of
this strategy of capturing a semantic constraint stabilized in a representational
practice: it characterizes the indication relation ⇒R as the relation that holds
between a type α in typ(S) and a type β in typ(T) whenever the constraint of
the form fS (̂α) �LC fT (̂β) holds.

Note: Other Constraints on Representational Acts. Typically, our repre-
sentational acts are constrained not only by these semantic constraints, but also
by syntactic stipulations, concerning what arrangements of symbols and colors
are allowed in representing objects. These stipulations combined with natural
(geometrical, topological, and physical) constraints to produce a larger set of
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constraints on the arrangements of symbols and colors. The B&S model cap-
tures their effects as constraints in the local logic LS on the source classification,
not as constraints in the local logic LC on the core classification.

Moreover, our representational acts are typically constrained by target re-
strictions, namely, restrictions on the choice of objects to be represented. For
example, only a region of Chicago in some period is chosen as the represented
object in the representational practice for Downtown Chicago Map. In fact, this
is an assumption on which the syntactic stipulations and semantic conventions
of this mapmaking practice are stabilized. Totally different stipulations and con-
ventions would be adopted if a region of the Rocky Mountains were the main
target of the representational practice. The kind of objects that come in the set
tok(T) is thus restricted due to target restrictions on our representational acts,
and for this reason, a substantial set of constraints hold on the classification T
and get captured in the local logic LT on the target classification. The constraint
{θ1, θ2, θ3, θ4} �LS θ5 cited in Section 3.4 is an example of such constraints.

4.3 Two-Tier Semantics

This pair of relations �R and ⇒R that we have just explained lets us charac-
terize the informational relation between a representation and the represented
object in a natural way.

Definition 6 (Representing As). Let R = 〈fS : S � C, fT : T � C,LS ,LC ,
LT 〉 be a representation system. Given a token a in tok(S), a token b in tok(T),
and a type β in typ(T), a represents b as being of type β if

1. a �R b and
2. there is a type α in typ(S) such that

– a |=S α, and
– α ⇒R β.

For example, recall that a map publisher takes an act whose representing object is
a particular complete print a of Downtown Chicago Map and whose represented
object is a particular region b of Chicago in a particular period of time (i.e.,
a �R b), that there is a unique street line labeled “E Ontario” drawn right-left
in this particular print a (i.e., a |=S σ1), and that it is a constraint on this
mapmaking practice that one tries to produce a map with a unique road line
labeled “E Ontario” drawn right-left only if the represented object has a unique
street named “E Ontario” running east-west (i.e., fS (̂σ1) �LC fT (̂θ1) and hence
σ1 ⇒R θ1). Under these conditions, the particular print a of Downtown Chicago
Map is said to represent the region b of Chicago in the particular period of time
as having a unique road named “E Ontario.”

The semantic theory outlined by Definitions 5 and 6 is “two-tier” in that it is
formulated with reference to two relations �R and ⇒R. Historically, we can see
it as a formal realization of some key ideas of situation semantics [10,11]: (1) It
takes the primary carrier of meaning to be a particular object in the world (the
token a in Definition 5 and 6) rather than a representation type, (2) it takes a
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representation as carrying meaning about some particular object in the world
(the token b in Definition 5 and 6) rather than an entire (possible) world, and (3)
it takes meaning as a special case of information-carrying regularities holding in
the environment (Clause 2, Definition 5).

5 Notion of Representational Practice

Our explanations so far have clarified what kinds of objects constitute each
of these sets tok(C), tok(S), and tok(T). The set tok(C) consists of represen-
tational acts that collect information about unique objects to produce unique
representations, while tok(S) representations produced by the representational
acts in tok(C) and tok(T) represented objects in the representational acts in
tok(C). As this description makes clear, tok(S) and tok(T) are defined on the
basis of tok(C), so they can be defined once tok(C) is defined.

The remaining problem is that it is by no means trivial to define tok(C). We
have seen that Barwise and Seligman conceptualize a representation system R
as a model of a representational practice, so that the members of tok(C) are
individual acts that constitute a representational practice. So the question is
what makes an individual act a member of a particular representational practice
rather than another. What distinguishes a representational practice from an
arbitrarily chosen set of individual acts?

This question is of utmost importance, because what exactly tok(C) is deter-
mines what constraints hold on the members of tok(C), that is, what semantic
conventions the relevant representational practice conform to. Furthermore, as
tok(S) and tok(S) are determined on the basis of tok(C), the question has ramifi-
cations on the set of constraints that the representations in the practice conform
to, as well the set of constraints that the objects represented in the practice
conform to. All these profoundly affect the effectiveness of the representational
practice in question.

Unfortunately, Barwise and Seligman provide no positive clue about this issue.
However, it is clear that the satisfaction of all constraints listed in �LC cannot be
the defining character of the set tok(C). The definition of a local logic requires
all constraints to be satisfied by all members of NLC , but it does not require
them to be satisfied by all members of tok(C).

Our proposal is to adopt Millikan’s idea of reproduction [7,8] and define
tok(C) as the class of objects “having been produced from one another or from
the same models” [8, p. 20]. A typical example of such a reproductive class is
the handshakes occurring in a single culture. Except for a small number of early
instances in the history of this culture, individual acts of handshake are not prod-
ucts of somebody’s creation, but reproductions of some previous handshakes.

Generally, the members of a reproductive class share certain characters, pre-
cisely because they are copies of one another. Thus, handshakes share various
physical characters in their movements, and that is because they are reproduc-
tions of some previous handshakes or some model handshakes. Following Millikan
[7], let us call such a character preserved in a repeated reproduction process a
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reproductively established character. Thanks to humans’ ability to copy or repeat
previous acts of handshakes, the reproduction process is relatively stable, pro-
ducing faithful copies over a period of time. However, it does go awry sometimes,
resulting in an anomalous handshake that lacks the relevant reproductively es-
tablished character.

To apply these ideas to characterize the set tok(C), let C be the character
of “satisfying a set of syntactic stipulations, semantic constraints, and target
restrictions.” Then we can see tok(C) as a reproductive class having C as its
reproductively established character. On this conception, each representational
act in tok(C) is a reproduction of previous representational acts in tok(C), and
precisely because it is a reproduction, it tends to share the character C with
other members of tok(C). Again, the process of reproduction is generally stable,
but it can go awry, and when it does, there is no guarantee that the resulting
act has the character C, that is, it can violate some of the syntactic stipulations,
semantic constraints, and target restrictions. We can then interpretNLC as those
acts for which the reproduction process goes normally and tok(C)−NLC as those
for which the reproduction process goes awry.

Examples

Example 1: System of Downtown Chicago Maps. In the case of the mapmaking
practice for downtown Chicago, some people collect information about a region in
Chicago in a particular period of time, some designer for the map publisher uses
that information to design a map, and the technician prints the first print of the
map. This sequence of acts, which we have characterized as c1 = e1◦e2◦p1 before,
is the first token in tok(C). This act satisfies a set of syntactic stipulations,
semantic constraints, and target restrictions, and we call this character C. When
the technician makes another print, this act p2 is sequenced with the previous
acts e1 and e2 to make another representational act, c2 = e1 ◦ e2 ◦ p2, which
is a reproduction of the act c1 = e1 ◦ e2 ◦ p1, and as such shares the character
C with it. Another printing act then gives rise to another representational act
c3 = e1◦e2◦p3, and so on until the final reproductive act, say, c2875 = e1◦e2◦p2875.
This way, multiple representational acts are reproduced, preserving the character
C. The class tok(C) of these acts is a reproductive class, and this makes up a
mapmaking practice for downtown Chicago.

What happens if the map publisher decides to update the maps they publish,
to reflect the recent change in the mapped region? Then a new sequence of
an information-collecting act, a design act, and a map-printing act takes place,
making up a representational act, say c2876. If the reproductive process is of the
kind that normally preserves C, c2876 belongs to the same reproductive class as
c1, c2, . . . , c2875 do. Then all subsequent acts reproducing c2876 are all members
of this class tok(C), extending the map publisher’s mapmaking practice.

Example 2: System of Scheduling Tables. Let us consider a case where represen-
tations are used in more private settings. If the manager of a shop regularly hears
from the part-time workers to decide on who will work on what day of the next
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week, and she puts up a table of the next week’s work schedule on the door of
her office, that will construct a reproductive class of representational acts. The
reproductively established character C is the satisfaction of syntactic stipula-
tions (regulating, for example, what types of symbols can appear in a table cell),
semantic constraints (regulating, for example, what types of symbols indicate
“on” and what types “off”), and target restriction limiting a representational
act only to the weekly work schedules of this particular shop. The manager’s act
of hearing and table-drawing conducted each week makes an individual repre-
sentational act, where the represented object is the shop’s work schedule during
the week about which the manager hears from the workers, and the representing
object is the particular table drawn by the manager. The act is reproduced every
week, accumulating as the tokens in tok(C).

Unlike the case of Downtown Chicago Map, the arrangement of symbols in the
produced table typically changes act by act, but these acts are still members of
the reproductive class they are continuations of the same reproductive process
that normally preserves C. For the same reason, a representational act done by
the sub-manager can be considered a member of the same reproductive class if
he or she has copied the manager’s table-drawing acts with respect to C.

What if the sub-manager keeps using the same table format but makes a small
change in syntactic and semantic constraints, such as using a check mark rather
than a circle to indicate “on”? On the one hand, this act can be considered
a member of a new reproductive class, which itself can grow if it is copied by
further acts. The new class has a slightly different reproductively established
character C′ than the class tok(C) of the manager’s original representational
acts. On the other hand, this act is a partial reproduction of the manager’s acts,
which preserves most of the constraints on them. Thus, this act, as well as any
further acts that copies it, can be considered members of a larger reproductive
class that extends tok(C). This larger reproductive class can be modeled by a
B&S model just as well, and since it still preserves a significant set of constraints,
it probably merits a serious logical investigation. This reproductive class makes
a higher taxon of representational acts, whose lower taxa tok(C) and the newly
started reproductive class.

6 Conclusion

Thanks to all this philosophical discussion, we now have a better conceptual
foundation on which we apply the B&S model. It was not clear from Barwise
and Seligman’s sketch what exactly their model is a model of—what exactly
they conceive as a representation system. Our study reveals that it is, roughly,
a reproductive class of individual representational acts that inherits a set of
representational rules. Our initial test shows that this concept does a pretty
good job in carving out a piece of reality that a B&S model is to capture.

Now, the B&S model features three local logics LC , LS , and LT as its main in-
gredients. It lets us characterize various interesting properties of representation
systems as conditions on LC , LS , and LT , and investigate the logical conse-
quences of these properties. For example, Barwise and Seligman have shown
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that the properties such as free ride, over-specificity, and auto-consistency of di-
agrammatic representations can be captured and studied in this way. We believe
that the triple of LC , LS , and LT embeds many more interesting properties, but
speculation aside, that work of defining such properties and investigating their
consequences is mathematical in nature, since it is exclusively concerned with
the model itself and the model in this case is a mathematical structure.

This entails that whatever result it obtains is fundamentally hypothetical—it
states that a representation system has such and such properties assuming it
has such and such LC , LS , and LT as its core logic, source logic, and target
logic. We do not have to be concerned with which system in the world has such
a combination of logics, and for that matter, if there is such a system at all. In
fact, it was not possible to be concerned with these matters, since we did not
know exactly what a representation system is that a B&S model is a model of.

The philosophical explication in the present paper changes this situation. Now
that we know what piece of reality a B&S model is to capture, the specifications
of LC , LS , and LT in a B&S model can be put in empirical test. We have an in-
dependent grasp of what the model is about, so we can put the model and the
modeled object side by side and evaluate their fit. And when the fit is good, we
can say, categorically, that this representation system has such and such proper-
ties, with a clear understanding of what “this system” refers to. As examples in
Section 5 suggest, reproductive classes of representational acts inheriting a set of
representational rules are abundant in both private and public media. The B&S
model now seems ready for use in the exploration of their logical properties.
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