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Context

Computer
Science

Machine
Learning

LinguisticsPsychology

My
research

▶ Natural language processing for psychology is underexplored

▶ We build on an existing subfield: sentiment and emotion analysis

▶ We study subjectivity (first-person perspective, meaning-making
processes, and experiential content)

▶ We focus on personal narratives (emotional narratives, dream reports)
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Introduction

How to model subjective experience in personal narratives?

▶ Cognitive science perspective on emotion analysis

▶ French corpus based on emotion components

▶ Emotion analysis in real-life and oniric situations

▶ Automatic thematic analysis in mental health narratives
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Cognitive science perspective on emotion analysis

G. Cortal and C. Bonard. Improving Language Models for Emotion Analysis: Insights
from Cognitive Science. CMCL @ ACL 2024.
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Psychology and emotion annotation

Psychological
theories

In text, emotion is... Example

Basic emotions
theory

a category "I love philosophy." → joy

Darwin (1872), Tomkins (1962), Ekman (1999), and Plutchik (2001)

Demszky et al. (2020) and Greschner et al. (2025)

Constructivist
theories

a continuous value with
an affective meaning

"His voice soothes me." →
valence (4/5), arousal (1/5)

Schachter and Singer (1962) and Russell and Barrett (1999)

Buechel and Hahn (2017)

Appraisal the-
ory

a continuous value with a
cognitive meaning

"I received a surprise gift." →
sudden (4/5), control (0/5)

Arnold (1960) and Lazarus (1991)

Troiano, Oberländer, and Klinger (2023)
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Psychology and emotion annotation

Psychological
theories

In text, emotion is... Example

composed of semantic
roles

"Louise (experiencer) was
angry (cue) towards Paul
(target), because he didn’t
inform her (cause)."

Campagnano, Conia, and Navigli (2022) and Klinger (2023)

Lee, Y. Chen, and Huang (2010), Xia and Ding (2019), and Tammewar et al. (2020)

Similar to aspect-based sentiment analysis (W. Zhang, Li, et al., 2022): “The
battery life is amazing (+), but its camera quality is disappointing (−).”
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Limitations in emotion analysis

▶ Though the theories reviewed are usually considered rivals, their
integration is possible and desirable (Scherer, 2022a)

▶ Emotion verbalization is underexplored
(Micheli, 2013b; Etienne, Battistelli, and Lecorvé, 2022)

▶ Benchmarks evaluate certain aspects of emotional understanding but
do not consider its full complexity
(Campagnano, Conia, and Navigli, 2022; W. Zhang, Deng, et al., 2023; Paech, 2024)
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Linguistic and cognitive science theories
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Which verbal signs are used to infer expressed emotions?
Raphaël Micheli categorizes a range of linguistic markers into three
emotion expression modes (Micheli, 2013a). The emotion can be:

▶ labeled explicitly with an emotional term ("I am sad")

▶ shown with utterance features such as interjections and punctuations
("Ah! That’s great!")

▶ suggested with the description of a situation which generally, in a
given sociocultural context, leads to an emotion
("She gave me a gift")

→ Emotion expression modes vary in interpretive difficulty
(Nathalie Blanc, 2010; Creissen and N. Blanc, 2017; Foppolo and Mazzaggio, 2024)

→ There exist an annotation scheme for emotion expression modes
(Etienne, Battistelli, and Lecorvé, 2022; Dragos et al., 2022)
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What are the psychological mechanisms used to infer what
is communicated?

A code is a pre-established pairing between stimuli and sets of
information

The Morse code is a pairing between <combination of short and long
signals> and [letters]

The formal semantics of a language is made of syntactical and lexical
rules that pairs <strings of words> with [sentential meanings]
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What are the psychological mechanisms used to infer what
is communicated?

Figure: Dictionary analysis in cognitive pragmatics.
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Codes underdetermine emotion meaning

Let’s take emotion expression modes as an example:

▶ Labeled : “I am happy now” is explicit about the feeling but does not
encode what the emotion is about

▶ Displayed : interjections (“Wow!”, “Ah!”, “Damn!”) show affect yet
leave valence and focus unclear

▶ Suggested : “The ship has black sails.” can communicate any kind of
emotion

→ We rely on other sources of evidence to infer what is communicated
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What are the psychological mechanisms used to infer what
is communicated?

Figure: Dictionary analysis in cognitive pragmatics.
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What are the psychological mechanisms used to infer what
is communicated?

Figure: Detective analysis in cognitive pragmatics.
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How to integrate psychological theories of emotion?

Figure: The integrated framework for emotion theories (Scherer, 2022b).
Rectangles represents the components constituting an emotional episode, and
arrows represent causation.

→ We use this framework to construct a corpus based on components
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French narratives based on emotion components

The corpus is available at hf.co/datasets/gustavecortal/FrenchEmotionalNarratives

G. Cortal, A. Finkel, P. Paroubek, L. Ye. Emotion Recognition based on Psychological
Components in Guided Narratives for Emotion Regulation. SIGHUM @ EACL 2023.

French narratives based on emotion components 17 / 43

https://huggingface.co/datasets/gustavecortal/FrenchEmotionalNarratives
https://aclanthology.org/2023.latechclfl-1.8/
https://aclanthology.org/2023.latechclfl-1.8/


Motivation

Limitation: Existing datasets do not consider all emotion components

Kim and Klinger (2019) study emotion communication in fan-fiction via
sensations, postures, and facial expressions

Tammewar et al. (2020) annotate emotion carriers (events, people,
objects) in spoken personal narratives in German (Rathner et al., 2018)

Casel, Heindl, and Klinger (2021) associate text spans with Scherer’s
emotion components in literature and Twitter corpora

→ New French corpus of emotional narratives structured by the authors
according to their behaviors, thoughts, physical feelings, and reasons
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French narratives based on emotion components
Contribution: +1,000 narratives structured with emotion components
by the writers themselves plus discrete emotion labels

Component Answer
Behavior I’m giving a lecture on a Friday morning at 8:30. A student

goes out and comes back a few moments later with a coffee
in his hand.

Feeling My heart is beating fast, and I freeze, waiting to know
how to act.

Thinking I think this student is disrupting my class.
Reason The student attacks my ability to be respected in class.

Chosen emotion: anger (possible choices: anger, fear, joy, sadness)

→ A. Finkel has been collecting narratives since 2005 during emotion regulation
sessions; I structured them to build a corpus for emotion classification
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Language models for emotion analysis
in real-life and oniric situations

Language models are available on hf.co/gustavecortal

G. Cortal, A. Finkel, P. Paroubek, L. Ye. Emotion Recognition based on Psychological
Components in Guided Narratives for Emotion Regulation. SIGHUM @ EACL 2023

G. Cortal. Sequence-to-Sequence Language Models for Character and Emotion
Detection in Dream Narratives. LREC-COLING 2024
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Discrete emotion detection based on components

Logistic Regression (tf-idf) CamemBERT
Component Precision Recall F1 Precision Recall F1

All 71.2 (2.6) 69.1 (2.2) 67.8 (2.3) 85.1 84.8 84.7
Without behavior 77.4 (2.3) 75.8 (2.4) 74.5 (2.6) 80.3 79.8 79.7
Without feeling 64.3 (1.9) 61.5 (1.2) 61.3 (2.2) 81.6 79.8 79.9
Without thinking 70.9 (1.8) 69.1 (2.0) 68.3 (2.2) 79.6 78.5 78.7
Without reason 64.3 (4.1) 64.5 (2.4) 62.3 (2.8) 78.7 78.5 78.6
Only behavior 52.1 (3.5) 54.6 (2.9) 51.7 (2.9) 68.4 67.1 66.6
Only feeling 69.6 (1.5) 68.9 (2.1) 68.4 (2.0) 67.8 68.4 67.7
Only thinking 50.1 (3.4) 53.8 (2.3) 50.6 (2.7) 70.5 70.1 70.1
Only reason 68.2 (1.8) 66.8 (2.2) 66.6 (2.3) 71.4 68.4 68.9

→ All components help; best results come from using all, supporting
Scherer’s hypothesis

→ Some components benefit from contextual understanding and world
knowledge
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Motivation for dream analysis

We performed emotion analysis on concrete, real life situations

We now turn to oniric, fictional situations: dream narratives

According to the continuity hypothesis, dreams reflect waking-life
concerns, emotions, and social contexts (Schredl and Hofmann, 2003)

→ Dream narratives possess a narrative structure and represent attempts
to communicate subjective experience
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Quantitative analysis of dream narratives

Quantitative dream analysis studies the continuity hypothesis, and relies
on dream databases and annotation schemes
(Winget and Kramer, 1979; Domhoff and Schneider, 2008)

DreamBank contains 27,000 narratives, only 1823 annotated with the
Hall and Van de Castle (HVdC) scheme
(Flanagan, 1966; Domhoff and Schneider, 2008)

The annotation process is complex and costly

→ How to automate the annotation process using language models?
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Example of an annotated dream with HVdC

Character:

▶ Status: individual alive (1), group alive (2), dead individual (3), dead group (4),
imaginary individual (5), imaginary group (6), original form (7), changed form (8)

▶ Gender: male (M), female (F), joint (J), indefinite (I)
▶ Identity: known (K), prominent (P), occupational (O), ethnic (E), unknown (U)
▶ Age: adult (A), teen (T), child (C)

Emotion: anger (AN), apprehension (AP), sadness (SD), confusion (CO), and
happiness (HA)
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Existing research on computational dream analysis

Lexical-based approaches associate text spans with specific categories
(e.g., type of interactions) (Miller, 1994; Fogli, Aiello, and Quercia, 2020)

Distributional semantic-based approaches represent text spans in a vector
space to identify prototypical situations
(Gutman Music, Holur, and Bulkeley, 2022)

McNamara et al. (2019) and Yu (2022) combine the lexical-based and
distributional semantic-based approaches with machine learning
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Existing research on computational dream analysis

Figure: Architecture for multi-label emotion detection (Bertolini et al., 2023).

They use full context and compare predictions with gold annotations

Limitations: emotions without characters; frequency not captured

→ We address this by identifying characters and their emotions with
transformer-based text-to-text models
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Character and emotion detection in dream narratives

→ Our framework can be extended to include other HVdC categories
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Results
Baseline is LaMini-Flan-T5 finetuned on 1823 dream narratives

Table: Character and emotion detection. p < 0.05.

Model Status Gender Identity Age Character Emotion
Baseline 82.9 78.0 76.2 86.2 64.7 75.1
Nosemantics 71.4 56.5 61.0 90.5 41.8 75.8
Nonames 80.7 74.3 74.2 84.0 60.9 73.0
Sizesmall 78.4 72.1 70.3 81.7 56.8 70.2
Sizelarge 84.5 80.3 78.6 87.3 67.6 74.7
Firstgroup 82.3 77.7 74.9 85.6 63.7 71.9
Firstindividual 80.6 76.1 74.2 83.9 62.7 67.3
Firstemotion 83.9 78.7 77.1 87.6 65.0 72.0
Conversioncomma 84.0 79.8 77.7 87.1 66.7 73.7
Conversionmarker 82.4 78.5 76.5 86.1 65.4 74.4

→ Our models can address this task; there is room for improvement

58 F1-score for gender prediction using lexical approaches (Fogli, Aiello, and Quercia, 2020)

86 F1-score for emotion presence detection using transformers (Bertolini et al., 2023)
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Case study on the war veteran

Group Category % Vet % Total ∆

Identity

known 24.9 51.6 -26.7
prominent 1.9 2.5 -0.6
occupational 22.4 8.0 14.4
ethnic 4.1 0.9 3.1
unknown 46.8 37.0 9.8

Gender

male 56.2 43.0 13.1
female 24.1 33.1 -9.0
joint 10.9 12.2 -1.3
undefined 7.9 8.7 -0.9

Table: Identity and gender proportions for the veteran (n=566 narratives)
versus other dreamers. ∆ shows the difference in percentage points; p < 0.05.

→ The veteran dreams more about occupational, ethnic, and unknown
identities compared to other dreamers

Generated annotations for DreamBank are available on hf.co/gustavecortal
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Automatic thematic analysis in mental health
narratives using language models

callyope.com

G. Cortal, S. Guessoum, X. Cao, R. Riad. Fine-grained mental health topic modeling
in different cohorts using large language models (preprint). 2025.
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Motivation

▶ Qualitative analysis of speech content is central to clinical practice

▶ Thematic analysis studies how people construct meaning

▶ Thematic analysis is time-consuming, often constrained to small,
monolingual corpora (Stanghellini et al., 2023)

▶ Computational approaches offers time savings, can analyze a larger
amount of data
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Methodology

We developed a pipeline that:

▶ clusters narratives across different cohorts by semantic content

▶ generates fine-grained natural language descriptions for each cluster

▶ links clusters to variation in clinical scores and sociodemographics
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Data collection

Narratives and clinical scores from four cohorts: French general
population (n=1809) and three clinical cohorts (Italian n=116, Chinese
n=52, Spanish n=90)

Clinical scores for depression (BDI, PHQ9, MADRS), anxiety (GAD7),
insomnia (AIS), and fatigue (MFI)

Open-ended questions involving last 24h, negative past event, positive
future event, current feelings and sleep, etc.
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Semantic clustering and description generation
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Contributions

▶ First topic modeling across different languages and cohorts using
language models

▶ Replaced keywords ("family") with context-rich descriptions to capture
symptom co-occurrence and clinical nuance ("family conflicts", "stress

related to exam preparation")

▶ Identified risk ("sleep disturbance") and protective ("physical activity") topics
for depression, consistent with psychiatric literature
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Distribution of depression scores across clusters
Current feelings and sleep (n=1786)

→ Depression scores vary significantly: cluster 26 highest (13.4±5.4),
cluster 1 lowest (2.6±2.2)
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Generated cluster descriptions

→ Clustering captures symptom severity and age-related circumstances
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Effect size across questions and clinical scores

→ Certain questions better discriminate clinical scores
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Effect size across questions and sociodemographics

→ Nearly all questions discriminate sociodemographics
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Risk and protective topics for depression

NLP and psychiatry researchers reviewed generated cluster descriptions to
identify risk and protective topics for depression

▶ Risk topics: sleep disturbance and fatigue (Yasugaki et al., 2025);
unemployment and financial stress (Arena et al., 2023); exam pressure
(Pérez-Jorge et al., 2025).

▶ Protective topics: arts and creative activity (Fancourt and Finn, 2019);
gardening and nature (Soga, Gaston, and Yamaura, 2017); holidays and travel
(Bloom, Geurts, and Kompier, 2013); physical activity (Pearce et al., 2022)

→ We found topics consistent with psychiatric literature, aligned with
labor-intensive qualitative research (Stanghellini et al., 2023)
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Conclusion and perspectives
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Conclusion

How to model subjective experience in personal narratives?

▶ Cognitive science perspective on emotion analysis
▶ Overview of psychological theories with emotion annotation schemes
▶ Limitations and research directions for emotion analysis

▶ New French corpus of narratives based on emotion components

▶ Emotion analysis in emotional and dream narratives
▶ First language model for emotion prediction based on components
▶ First language model for character and emotion prediction in dreams

▶ Automatic thematic analysis in mental health narratives

contact: gustavecortal@gmail.com
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Perspectives

▶ Emotion analysis for mental health: empathic support, cognitive
distortions, theory of mind
(Gandhi et al., 2023; Ma et al., 2023; A. Sharma et al., 2023)

▶ Post-training for psychology: preferences and reasoning data
(M. Zhang, Eack, and Z. Z. Chen, 2025)

▶ Psychology of language models: sycophancy, thought operations
(Didolkar et al., 2025; M. Sharma et al., 2025)
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Component classification in emotional narratives

Model Precision Recall F1

Logistic Regression 84.9 (0.3) 84.3 (0.3) 84.4 (0.3)

CamemBERT 93.2 93.0 93.1

Table: Scores (± std) for emotion component classification.

→ Models can be used to automatically classify unstructured narratives
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Results

StableBelugai is a 7B model with in-context learning using i examples

Model Status Gender Identity Age Character Emotion
Baseline 82.87 78.02 76.17 86.21 64.74 75.13
StableBeluga1 43.95** 39.76** 31.25** 56.16** 15.65** -
StableBeluga3 52.44** 46.49** 38.46** 63.88** 21.06** -
StableBeluga5 55.89** 46.29** 42.61** 63.73** 24.86** -

Table: F1-scores for character and emotion detection. Significant differences
from baseline: ** (p < 0.01), * (p < 0.05).

→ Compared to StableBeluga, our supervised models perform better
while having 28 times fewer parameters (248M vs. 7B)
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Demographics

General
Population Androids MODMA VOCES
n=1809 n=116 n=52 n=90

Demographics
Language French Italian Chinese Spanish
Age *** n.s. n.s. ***
Mean (SD) 37.8 (18.2) 37.4 (12.0) 31.3 (9.2) 38.6 (14.9)
Range 18–91 19–71 18–52 21–76
Sex, n (%) n.s. n.s. n.s. n.s.
Female 1187 (66.2) 84 (72.4) 16 (30.8) 39 (43.3)
Male 595 (33.2) 32 (27.6) 36 (69.2) 48 (53.3)
Other 11 (0.6) 0 (0.0) 0 (0.0) 3 (3.3)
Education, n (%) n.s. n.s. n.s. n.s.
No diploma 52 (2.9) 11 (9.5) 7 (13.5) -
Secondary 291 (16.2) 37 (31.9) 8 (15.4) -
Higher short 213 (11.9) 52 (44.8) 0 (0.0) -
Higher long 1236 (69.0) 16 (13.8) 37 (71.2) -
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Clinical evaluation

General
Population Androids MODMA VOCES
n=1809 n=116 n=52 n=90

C-SSRS n.s. n.s. n.s. n.s.
Suicidal risk, n (%) - - - 60 (66.7)
No suicidal risk, n (%) - - - 30 (33.3)
MADRS / MDD n.s. n.s. n.s. n.s.
Depression, n (%) - 64 (55.2) 23 (44.2) -
No depression, n (%) - 52 (44.8) 29 (55.8) -
PHQ-9 n.s. n.s. *** ***
Mean (SD) 5.2 (4.6) - 9.4 (8.5) 10.5 (6.8)
Range 0–27 - 0–25 0.0–26.0
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